1,084 research outputs found

    General Rank Multiuser Downlink Beamforming With Shaping Constraints Using Real-valued OSTBC

    Full text link
    In this paper we consider optimal multiuser downlink beamforming in the presence of a massive number of arbitrary quadratic shaping constraints. We combine beamforming with full-rate high dimensional real-valued orthogonal space time block coding (OSTBC) to increase the number of beamforming weight vectors and associated degrees of freedom in the beamformer design. The original multi-constraint beamforming problem is converted into a convex optimization problem using semidefinite relaxation (SDR) which can be solved efficiently. In contrast to conventional (rank-one) beamforming approaches in which an optimal beamforming solution can be obtained only when the SDR solution (after rank reduction) exhibits the rank-one property, in our approach optimality is guaranteed when a rank of eight is not exceeded. We show that our approach can incorporate up to 79 additional shaping constraints for which an optimal beamforming solution is guaranteed as compared to a maximum of two additional constraints that bound the conventional rank-one downlink beamforming designs. Simulation results demonstrate the flexibility of our proposed beamformer design

    Symbol-Level Multiuser MISO Precoding for Multi-level Adaptive Modulation

    Get PDF
    Symbol-level precoding is a new paradigm for multiuser downlink systems which aims at creating constructive interference among the transmitted data streams. This can be enabled by designing the precoded signal of the multiantenna transmitter on a symbol level, taking into account both channel state information and data symbols. Previous literature has studied this paradigm for MPSK modulations by addressing various performance metrics, such as power minimization and maximization of the minimum rate. In this paper, we extend this to generic multi-level modulations i.e. MQAM and APSK by establishing connection to PHY layer multicasting with phase constraints. Furthermore, we address adaptive modulation schemes which are crucial in enabling the throughput scaling of symbol-level precoded systems. In this direction, we design signal processing algorithms for minimizing the required power under per-user SINR or goodput constraints. Extensive numerical results show that the proposed algorithm provides considerable power and energy efficiency gains, while adapting the employed modulation scheme to match the requested data rate

    Constructive Multiuser Interference in Symbol Level Precoding for the MISO Downlink Channel

    Get PDF
    This paper investigates the problem of interference among the simultaneous multiuser transmissions in the downlink of multiple antennas systems. Using symbol level precoding, a new approach towards the multiuser interference is discussed along this paper. The concept of exploiting the interference between the spatial multiuser transmissions by jointly utilizing the data information (DI) and channel state information (CSI), in order to design symbol-level precoders, is proposed. In this direction, the interference among the data streams is transformed under certain conditions to useful signal that can improve the signal to interference noise ratio (SINR) of the downlink transmissions. We propose a maximum ratio transmission (MRT) based algorithm that jointly exploits DI and CSI to glean the benefits from constructive multiuser interference. Subsequently, a relation between the constructive interference downlink transmission and physical layer multicasting is established. In this context, novel constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receivers is proposed. Furthermore, fairness through maximizing the weighted minimum SINR (max min SINR) of the users is addressed by finding the link between the min power and max min SINR problems. Moreover, heuristic precoding techniques are proposed to tackle the weighted sum rate problem. Finally, extensive numerical results show that the proposed schemes outperform other state of the art techniques.Comment: Submitted to IEEE Transactions on Signal Processin

    Energy-Efficient Symbol-Level Precoding in Multiuser MISO Based on Relaxed Detection Region

    Get PDF
    This paper addresses the problem of exploiting interference among simultaneous multiuser transmissions in the downlink of multiple-antenna systems. Using symbol-level precoding, a new approach towards addressing the multiuser interference is discussed through jointly utilizing the channel state information (CSI) and data information (DI). The interference among the data streams is transformed under certain conditions to a useful signal that can improve the signal-to-interference noise ratio (SINR) of the downlink transmissions and as a result the system's energy efficiency. In this context, new constructive interference precoding techniques that tackle the transmit power minimization (min power) with individual SINR constraints at each user's receiver have been proposed. In this paper, we generalize the CI precoding design under the assumption that the received MPSK symbol can reside in a relaxed region in order to be correctly detected. Moreover, a weighted maximization of the minimum SNR among all users is studied taking into account the relaxed detection region. Symbol error rate analysis (SER) for the proposed precoding is discussed to characterize the tradeoff between transmit power reduction and SER increase due to the relaxation. Based on this tradeoff, the energy efficiency performance of the proposed technique is analyzed. Finally, extensive numerical results show that the proposed schemes outperform other state-of-the-art techniques.Comment: Submitted to IEEE transactions on Wireless Communications. arXiv admin note: substantial text overlap with arXiv:1408.470

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte
    • …
    corecore