2 research outputs found

    Downlink Assisted Uplink Zero Forcing for TDD Multiuser MIMO Systems

    No full text
    <p/> <p>This paper proposes practical coordinated linear transmit-receive processing schemes for the uplink (UL) of multiuser multiple-input multiple-output (MIMO) systems in the time division duplex (TDD) mode. The base station (BS) computes the transmission parameters in a centralized manner and employs downlink (DL) pilot signals to convey the information of the beam selection and beamformers to be used by the terminals. When coexisting with the DL transmit-receive zero forcing, the precoded DL demodulation pilots can be reused for UL beam allocation so that no additional pilot overhead is required. Furthermore, the locally available channel state information (CSI) of the effective MIMO channel is sufficient for the terminals to perform transmit power and rate allocation independently. In order to reduce the UL pilot overhead as well, we propose reusing the precoded UL demodulation pilots in turn for partial CSI sounding. The achievable sum rate of the system is evaluated in time-varying fading channels and with channel estimation. According to the results, the proposed UL transmission strategy provides increased rates compared to single-user MIMO transmission combined with user selection as well as to UL antenna selection transmission, without being sensitive to CSI uncertainty. </p

    Downlink Assisted Uplink Zero Forcing for TDD Multiuser MIMO Systems

    Get PDF
    This paper proposes practical coordinated linear transmit-receive processing schemes for the uplink (UL) of multiuser multiple-input multiple-output (MIMO) systems in the time division duplex (TDD) mode. The base station (BS) computes the transmission parameters in a centralized manner and employs downlink (DL) pilot signals to convey the information of the beam selection and beamformers to be used by the terminals. When coexisting with the DL transmit-receive zero forcing, the precoded DL demodulation pilots can be reused for UL beam allocation so that no additional pilot overhead is required. Furthermore, the locally available channel state information (CSI) of the effective MIMO channel is sufficient for the terminals to perform transmit power and rate allocation independently. In order to reduce the UL pilot overhead as well, we propose reusing the precoded UL demodulation pilots in turn for partial CSI sounding. The achievable sum rate of the system is evaluated in time-varying fading channels and with channel estimation. According to the results, the proposed UL transmission strategy provides increased rates compared to single-user MIMO transmission combined with user selection as well as to UL antenna selection transmission, without being sensitive to CSI uncertainty
    corecore