4 research outputs found

    A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis

    Get PDF
    For multitemporal analysis of synthetic aperture radar (SAR) images acquired with a terrain observation by progressive scan (TOPS) mode, all acquisitions from a given satellite track must be coregistered to a reference coordinate system with accuracies better than 0.001 of a pixel (assuming full SAR resolution) in the azimuth direction. Such a high accuracy can be achieved through geometric coregistration, using precise satellite orbits and a digital elevation model, followed by a refinement step using a time-series analysis of coregistration errors. These errors represent the misregistration between all TOPS acquisitions relative to the reference coordinate system. We develop a workflow to estimate the time series of azimuth misregistration using a network-based enhanced spectral diversity (NESD) approach, in order to reduce the impact of temporal decorrelation on coregistration. Example time series of misregistration inferred for five tracks of Sentinel-1 TOPS acquisitions indicates a maximum relative azimuth misregistration of less than 0.01 of the full azimuth resolution between the TOPS acquisitions in the studied areas. Standard deviation of the estimated misregistration time series for different stacks varies from 1.1e-3 to 2e-3 of the azimuth resolution, equivalent to 1.6-2.8 cm orbital uncertainty in the azimuth direction. These values fall within the 1-sigma orbital uncertainty of the Sentinel-1 orbits and imply that orbital uncertainty is most likely the main source of the constant azimuth misregistration between different TOPS acquisitions. We propagate the uncertainty of individual misregistration estimated with ESD to the misregistration time series estimated with NESD and investigate the different challenges for operationalizing NESD

    A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis

    Full text link

    First multi-year assessment of Sentinel-1 radial velocity products using HF radar currents in a coastal environment

    Get PDF
    Direct sensing of total ocean surface currents with microwave Doppler signals is a growing topic of interest for oceanography, with relevance to several new ocean mission concepts proposed in recent years. Since 2014, the spaceborne C-band SAR instruments of the Copernicus Sentinel-1 (S1) mission routinely acquire microwave Doppler data, distributed to users through operational S1 Level-2 ocean radial velocity (L2 OCN RVL) products. S1 L2 RVL data could produce high-resolution maps of ocean surface currents that would benefit ocean observing and modelling, particularly in coastal regions. However, uncorrected platform effects and instrument anomalies continue to impact S1 RVL data and prevent direct exploitation. In this paper, a simple empirical method is proposed to calibrate and correct operational S1 L2 RVL products and retrieve two-dimensional maps of surface currents in the radar line-of-sight. The study focuses on the German Bight where wind, wave and current data from marine stations and an HF radar instrumented site provide comprehensive means to evaluate S1 retrieved currents. Analyses are deliberately limited to Sentinel-1A (S1A) ascending passes to focus on one single instrument and fixed SAR viewing geometry. The final dataset comprises 78 separate S1A acquisitions over 2.5 years, of which 56 are matched with collocated HF radar data. The empirical corrections bring significant improvements to S1A RVL data, producing higher quality estimates and much better agreement with HF radar radial currents. Comparative evaluation of S1A against HF radar currents for different WASV corrections reveal that best results are obtained in this region when computing the WASV with sea state rather than wind vector input. Accounting for sea state produces S1 radial currents with a precision (std of the difference) around 0.3 m/s at ∼1 km resolution. Precision improves to ∼0.24 m/s when averaging over 21 × 27 km2, with correlations with HF radar data reaching up to 0.93. Evidence of wind-current interactions when tides and wind align and short fetch conditions call for further research with more satellite data and other sites to better understand and correct the WASV in coastal regions. Finally, 1 km resolution maps of climatological S1A radial currents obtained over 2.5 years reveal strong coastal jets and fine scale details of the coastal circulation that closely match the known bathymetry and deep-water coastal channels in this region. The wealth of oceanographic information in corrected S1 RVL data is encouraging for Doppler oceanography from space and its application to observing small scale ocean dynamics, atmosphere and ocean vertical exchanges and marine ecosystem response to environmental change

    Doppler-related Distortions in TOPS SAR Images

    Get PDF
    A direct consequence of the TOPS acquisition geometry and the steering in azimuth of the antenna is the timevarying Doppler centroid within bursts. If this fact is not properly accommodated during SAR image formation, undesired distortions in both azimuth and range dimensions of the focused SAR images may appear. Azimuth distortions are caused by the local mismatch of both squint and topography. Range distortions arise from the inaccurate accommodation of the intrapulse motion of the platform, usually known as the stop-and-go approximation. Conventional spaceborne SAR image formation schemes will be, in general, unable to provide accurate TOPS SAR images. These distortions are discussed and evaluated for exemplary low-Earthorbit SAR scenarios. Compensation strategies are presented and validated with TerraSAR-X TOPS data. A discussion of the potential impact on the Sentinel-1 interferometric-wide-swath and extra-wide-swath modes (i.e., TOPS) is also given
    corecore