2,636 research outputs found

    Iterative amplitude/phase multiple-symbol differential sphere detection for DAPSK modulated transmissions

    No full text
    Differentially encoded and non-coherently detected transceivers exhibit a low complexity, since they dispense with complex channel estimation. Albeit this is achieved at the cost of requiring an increased transmit power, they are particularly beneficial, for example in cooperative communication scenarios, where the employment of channel estimation for all the mobile-to-mobile links may become unrealistic. In pursuit of high bandwidth efficiency, differential amplitude and phase shift keying (DAPSK) was devised using constellations of multiple concentric rings. In order to increase resilience against the typical high-Doppler-induced performance degradation of DAPSK and/or enhance the maximum achievable error-free transmission rate for DAPSK modulated systems, multiple-symbol differential detection (MSDD) may be invoked. However, the complexity of the maximum-a-posteriori (MAP) MSDD increases exponentially with the detection window size and hence may become excessive upon increasing the window size, especially in the context of iterative detection aided channel coded system. In order to circumvent this excessive complexity, we conceive a decomposed two-stage iterative amplitude and phase (A/P) detection framework, where the challenge of having a non-constant-modulus constellation is tackled with the aid of a specifically designed information exchange between the independent A/P detection stages, thus allowing the incorporation of reduced-complexity sphere detection (SD). Consequently, a near-MAP-MSDD performance can be achieved at a significantly reduced complexity, which may be five orders of magnitude lower than that imposed by the traditional MAP-MSDD in the 16-DAPSK scenario considered

    Joint Decision-Directed Channel and Noise-Variance Estimation for MIMO OFDM/SDMA Systems Based on Expectation-Conditional Maximization

    No full text
    A joint channel impulse response (CIR) and noise-variance estimation scheme is proposed for multiuser multiple-input–multiple-output (MIMO) orthogonal frequency-division multiplexing/space-division multiple access (OFDM/SDMA) systems, which is based on the expectation-conditional maximization (ECM) algorithm. Multiple users communicating over fading channels exhibiting a range of different characteristics are considered in this paper. Channel estimation becomes quite challenging in this scenario since an increased number of independent transmitter–receiver links having different statistical characteristics have to be simultaneously estimated for each subcarrier. To cope with this scenario, we design an ECM-based joint CIR and noise-variance estimator for multiuser MIMO OFDM/SDMA systems, which is capable of simultaneously estimating diverse CIRs and noise variance. Furthermore, we propose a forward error code (FEC)-aided decision-directed channel estimation scheme based on the ECM algorithm, which further improves the ECM algorithm by exploiting the error correction capability of an FEC decoder for iteratively exchanging information between the decoder and the ECM algorithm

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Near-Capacity Turbo Coded Soft-decision Aided DAPSK/Star-QAM

    No full text
    Low-complexity non-coherently detected Differential Amplitude and Phase-Shift Keying (DAPSK) schemes constitute an ideal candidate for wireless communications. In this paper, we derive the soft-output probability formulas required for the soft-decision based demodulation of DAPSK, which are then invoked for Turbo Coded (TC) transmissions. Furthermore, the achievable throughput characteristics of the family of M-ary DAPSK schemes are provided. It is shown that the proposed 4-ring based TC assisted 64-ary DAPSK scheme achieves a coding gain of about 4.2 dBs in comparison to the identical-throughput TC assisted 64-ary Differential Phase-Shift Keying (64-DPSK) scheme at a bit error ratio of 10?5

    Time Delay Estimation in Mobile Sensors for Underwater Networking

    Get PDF
    The time synchronization between any two sensor nodes in an Ad-hoc Underwater Sensor Networks (UWSNs) could be destroyed due to motion of these wireless sensors which induced Doppler shift. This synchronization obstacle can be sorted out by exploiting the mobility between sensor nodes. In the proposed system, the time delay between sensor nodes in both divergence and convergence scenarios are estimated based on estimating the time scaling factor. An improvement is introduced in terms of packet structure in order to challenge the channel effect and accurate estimation over the speed up to ±2 m/s. To verify the proposed system robustness, different levels of the nodes speeds have been considered in the simulation. Obtained results show that the proposed system is robust against severs channel conditions. Keywords: UWSNs, time delay, time synchronization
    corecore