60,956 research outputs found

    Independent analysis of the orbits of Pioneer 10 and 11

    Full text link
    Independently developed orbit determination software is used to analyze the orbits of Pioneer 10 and 11 using Doppler data. The analysis takes into account the gravitational fields of the Sun and planets using the latest JPL ephemerides, accurate station locations, signal propagation delays (e.g., the Shapiro delay, atmospheric effects), the spacecrafts' spin, and maneuvers. New to this analysis is the ability to utilize telemetry data for spin, maneuvers, and other on-board systematic effects. Using data that was analyzed in prior JPL studies, the anomalous acceleration of the two spacecraft is confirmed. We are also able to put limits on any secondary acceleration (i.e., jerk) terms. The tools that were developed will be used in the upcoming analysis of recently recovered Pioneer 10 and 11 Doppler data files.Comment: 22 pages, 5 figures; accepted for publication in IJMP

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c−1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c−2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c−2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies

    Get PDF
    The Lorentz covariant theory of propagation of light in the (weak) gravitational fields of N-body systems consisting of arbitrarily moving point-like bodies with constant masses is constructed. The theory is based on the Lienard-Wiechert presentation of the metric tensor. A new approach for integrating the equations of motion of light particles depending on the retarded time argument is applied. In an approximation which is linear with respect to the universal gravitational constant, G, the equations of light propagation are integrated by quadratures and, moreover, an expression for the tangent vector to the perturbed trajectory of light ray is found in terms of instanteneous functions of the retarded time. General expressions for the relativistic time delay, the angle of light deflection, and gravitational red shift are derived. They generalize previously known results for the case of static or uniformly moving bodies. The most important applications of the theory are given. They include a discussion of the velocity dependent terms in the gravitational lens equation, the Shapiro time delay in binary pulsars, and a precise theoretical formulation of the general relativistic algorithm of data processing of radio and optical astrometric measurements in the non-stationary gravitational field of the solar system. Finally, proposals for future theoretical work being important for astrophysical applications are formulated.Comment: 77 pages, 7 figures, list of references is updated, to be published in Phys. Rev. D6

    Feasibility of UV lasing without inversion in mercury vapor

    Full text link
    We investigate the feasibility of UV lasing without inversion at a wavelength of 253.7253.7 nm utilizing interacting dark resonances in mercury vapor. Our theoretical analysis starts with radiation damped optical Bloch equations for all relevant 13 atomic levels. These master equations are generalized by considering technical phase noise of the driving lasers. From the Doppler broadened complex susceptibility we obtain the stationary output power from semiclassical laser theory. The finite overlap of the driving Gaussian laser beams defines an ellipsoidal inhomogeneous gain distribution. Therefore, we evaluate the intra-cavity field inside a ring laser self-consistently with Fourier optics. This analysis confirms the feasibility of UV lasing and reveals its dependence on experimental parameters.Comment: changes were made according to reviewer comments (accepted for publication in JOSA B

    Interference at quantum transitions: lasing without inversion and resonant four-wave mixing in strong fields at Doppler-broadened transitions

    Get PDF
    An influence of nonlinear interference processes at quantum transitions under strong resonance electromagnetic fields on absorption, amplification and refractive indices as well as on four-wave mixing processes is investigated. Doppler broadening of the coupled transitions, incoherent excitation, relaxation processes, as well as power saturation processes associated with the coupled levels are taken into account. Both closed (ground state is involved) and open (only excited states are involved) energy level configurations are considered. Common expressions are obtained which allow one to analyze the optical characteristics (including gain without inversion and enhanced refractive index at vanishing absorption) for various V, Lambda and H configurations of interfering transitions by a simple substitution of parameters. Similar expressions for resonant four-wave mixing in Raman configurations are derived too. Crucial role of Doppler broadening is shown. The theory is applied to numerical analysis of some recent and potential experiments.Comment: 12 pages, 9 eps figures, invited paper, Proceedings of the 11th International Vavilov Conference on Nonlinear Optic

    Independent Confirmation of the Pioneer 10 Anomalous Acceleration

    Full text link
    I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 +/- 1.34) x 10^{-8} cm s^{-2}, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within +/- 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of > 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.Comment: RevTeX, 29 pages, 5 figures, submitted to Phys Rev
    • 

    corecore