2 research outputs found

    Domain-Aware Dynamic Networks

    Full text link
    Deep neural networks with more parameters and FLOPs have higher capacity and generalize better to diverse domains. But to be deployed on edge devices, the model's complexity has to be constrained due to limited compute resource. In this work, we propose a method to improve the model capacity without increasing inference-time complexity. Our method is based on an assumption of data locality: for an edge device, within a short period of time, the input data to the device are sampled from a single domain with relatively low diversity. Therefore, it is possible to utilize a specialized, low-complexity model to achieve good performance in that input domain. To leverage this, we propose Domain-aware Dynamic Network (DDN), which is a high-capacity dynamic network in which each layer contains multiple weights. During inference, based on the input domain, DDN dynamically combines those weights into one single weight that specializes in the given domain. This way, DDN can keep the inference-time complexity low but still maintain a high capacity. Experiments show that without increasing the parameters, FLOPs, and actual latency, DDN achieves up to 2.6\% higher AP50 than a static network on the BDD100K object-detection benchmark

    Self-Supervised Dynamic Networks for Covariate Shift Robustness

    Full text link
    As supervised learning still dominates most AI applications, test-time performance is often unexpected. Specifically, a shift of the input covariates, caused by typical nuisances like background-noise, illumination variations or transcription errors, can lead to a significant decrease in prediction accuracy. Recently, it was shown that incorporating self-supervision can significantly improve covariate shift robustness. In this work, we propose Self-Supervised Dynamic Networks (SSDN): an input-dependent mechanism, inspired by dynamic networks, that allows a self-supervised network to predict the weights of the main network, and thus directly handle covariate shifts at test-time. We present the conceptual and empirical advantages of the proposed method on the problem of image classification under different covariate shifts, and show that it significantly outperforms comparable methods
    corecore