160 research outputs found

    BlenDA: Domain Adaptive Object Detection through diffusion-based blending

    Full text link
    Unsupervised domain adaptation (UDA) aims to transfer a model learned using labeled data from the source domain to unlabeled data in the target domain. To address the large domain gap issue between the source and target domains, we propose a novel regularization method for domain adaptive object detection, BlenDA, by generating the pseudo samples of the intermediate domains and their corresponding soft domain labels for adaptation training. The intermediate samples are generated by dynamically blending the source images with their corresponding translated images using an off-the-shelf pre-trained text-to-image diffusion model which takes the text label of the target domain as input and has demonstrated superior image-to-image translation quality. Based on experimental results from two adaptation benchmarks, our proposed approach can significantly enhance the performance of the state-of-the-art domain adaptive object detector, Adversarial Query Transformer (AQT). Particularly, in the Cityscapes to Foggy Cityscapes adaptation, we achieve an impressive 53.4% mAP on the Foggy Cityscapes dataset, surpassing the previous state-of-the-art by 1.5%. It is worth noting that our proposed method is also applicable to various paradigms of domain adaptive object detection. The code is available at:https://github.com/aiiu-lab/BlenDAComment: ICASSP(2024):2024 IEEE International Conference on Acoustics, Speech and Signal Processin

    Instance-Invariant Domain Adaptive Object Detection via Progressive Disentanglement

    Full text link
    Most state-of-the-art methods of object detection suffer from poor generalization ability when the training and test data are from different domains. To address this problem, previous methods mainly explore to align distribution between source and target domains, which may neglect the impact of the domain-specific information existing in the aligned features. Besides, when transferring detection ability across different domains, it is important to extract the instance-level features that are domain-invariant. To this end, we explore to extract instance-invariant features by disentangling the domain-invariant features from the domain-specific features. Particularly, a progressive disentangled mechanism is proposed to decompose domain-invariant and domain-specific features, which consists of a base disentangled layer and a progressive disentangled layer. Then, with the help of Region Proposal Network (RPN), the instance-invariant features are extracted based on the output of the progressive disentangled layer. Finally, to enhance the disentangled ability, we design a detached optimization to train our model in an end-to-end fashion. Experimental results on four domain-shift scenes show our method is separately 2.3\%, 3.6\%, 4.0\%, and 2.0\% higher than the baseline method. Meanwhile, visualization analysis demonstrates that our model owns well disentangled ability

    Source-free Domain Adaptive Object Detection in Remote Sensing Images

    Full text link
    Recent studies have used unsupervised domain adaptive object detection (UDAOD) methods to bridge the domain gap in remote sensing (RS) images. However, UDAOD methods typically assume that the source domain data can be accessed during the domain adaptation process. This setting is often impractical in the real world due to RS data privacy and transmission difficulty. To address this challenge, we propose a practical source-free object detection (SFOD) setting for RS images, which aims to perform target domain adaptation using only the source pre-trained model. We propose a new SFOD method for RS images consisting of two parts: perturbed domain generation and alignment. The proposed multilevel perturbation constructs the perturbed domain in a simple yet efficient form by perturbing the domain-variant features at the image level and feature level according to the color and style bias. The proposed multilevel alignment calculates feature and label consistency between the perturbed domain and the target domain across the teacher-student network, and introduces the distillation of feature prototype to mitigate the noise of pseudo-labels. By requiring the detector to be consistent in the perturbed domain and the target domain, the detector is forced to focus on domaininvariant features. Extensive results of three synthetic-to-real experiments and three cross-sensor experiments have validated the effectiveness of our method which does not require access to source domain RS images. Furthermore, experiments on computer vision datasets show that our method can be extended to other fields as well. Our code will be available at: https://weixliu.github.io/ .Comment: 14 pages, 11 figure

    Domain Adaptive Object Detection for Autonomous Driving under Foggy Weather

    Full text link
    Most object detection methods for autonomous driving usually assume a consistent feature distribution between training and testing data, which is not always the case when weathers differ significantly. The object detection model trained under clear weather might not be effective enough in foggy weather because of the domain gap. This paper proposes a novel domain adaptive object detection framework for autonomous driving under foggy weather. Our method leverages both image-level and object-level adaptation to diminish the domain discrepancy in image style and object appearance. To further enhance the model's capabilities under challenging samples, we also come up with a new adversarial gradient reversal layer to perform adversarial mining for the hard examples together with domain adaptation. Moreover, we propose to generate an auxiliary domain by data augmentation to enforce a new domain-level metric regularization. Experimental results on public benchmarks show the effectiveness and accuracy of the proposed method. The code is available at https://github.com/jinlong17/DA-Detect.Comment: Accepted by WACV2023. Code is available at https://github.com/jinlong17/DA-Detec
    • …
    corecore