2 research outputs found

    Learning Structure and Strength of CNN Filters for Small Sample Size Training

    Full text link
    Convolutional Neural Networks have provided state-of-the-art results in several computer vision problems. However, due to a large number of parameters in CNNs, they require a large number of training samples which is a limiting factor for small sample size problems. To address this limitation, we propose SSF-CNN which focuses on learning the structure and strength of filters. The structure of the filter is initialized using a dictionary-based filter learning algorithm and the strength of the filter is learned using the small sample training data. The architecture provides the flexibility of training with both small and large training databases and yields good accuracies even with small size training data. The effectiveness of the algorithm is first demonstrated on MNIST, CIFAR10, and NORB databases, with a varying number of training samples. The results show that SSF-CNN significantly reduces the number of parameters required for training while providing high accuracies the test databases. On small sample size problems such as newborn face recognition and Omniglot, it yields state-of-the-art results. Specifically, on the IIITD Newborn Face Database, the results demonstrate improvement in rank-1 identification accuracy by at least 10%.Comment: 10 pages, 9 figures, Accepted in CVPR 201

    Unravelling Small Sample Size Problems in the Deep Learning World

    Full text link
    The growth and success of deep learning approaches can be attributed to two major factors: availability of hardware resources and availability of large number of training samples. For problems with large training databases, deep learning models have achieved superlative performances. However, there are a lot of \textit{small sample size or S3S^3} problems for which it is not feasible to collect large training databases. It has been observed that deep learning models do not generalize well on S3S^3 problems and specialized solutions are required. In this paper, we first present a review of deep learning algorithms for small sample size problems in which the algorithms are segregated according to the space in which they operate, i.e. input space, model space, and feature space. Secondly, we present Dynamic Attention Pooling approach which focuses on extracting global information from the most discriminative sub-part of the feature map. The performance of the proposed dynamic attention pooling is analyzed with state-of-the-art ResNet model on relatively small publicly available datasets such as SVHN, C10, C100, and TinyImageNet.Comment: 3 figures, 2 tables, accepted in BigMM 202
    corecore