101 research outputs found

    Domain Generalization by Solving Jigsaw Puzzles

    Full text link
    Human adaptability relies crucially on the ability to learn and merge knowledge both from supervised and unsupervised learning: the parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help to generalize. In this paper we propose to apply a similar approach to the task of object recognition across domains: our model learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals how to solve a jigsaw puzzle on the same images. This secondary task helps the network to learn the concepts of spatial correlation while acting as a regularizer for the classification task. Multiple experiments on the PACS, VLCS, Office-Home and digits datasets confirm our intuition and show that this simple method outperforms previous domain generalization and adaptation solutions. An ablation study further illustrates the inner workings of our approach.Comment: Accepted at CVPR 2019 (oral

    Heterogeneous Domain Generalization via Domain Mixup

    Full text link
    One of the main drawbacks of deep Convolutional Neural Networks (DCNN) is that they lack generalization capability. In this work, we focus on the problem of heterogeneous domain generalization which aims to improve the generalization capability across different tasks, which is, how to learn a DCNN model with multiple domain data such that the trained feature extractor can be generalized to supporting recognition of novel categories in a novel target domain. To solve this problem, we propose a novel heterogeneous domain generalization method by mixing up samples across multiple source domains with two different sampling strategies. Our experimental results based on the Visual Decathlon benchmark demonstrates the effectiveness of our proposed method. The code is released in \url{https://github.com/wyf0912/MIXALL

    Random Style Transfer based Domain Generalization Networks Integrating Shape and Spatial Information

    Full text link
    Deep learning (DL)-based models have demonstrated good performance in medical image segmentation. However, the models trained on a known dataset often fail when performed on an unseen dataset collected from different centers, vendors and disease populations. In this work, we present a random style transfer network to tackle the domain generalization problem for multi-vendor and center cardiac image segmentation. Style transfer is used to generate training data with a wider distribution/ heterogeneity, namely domain augmentation. As the target domain could be unknown, we randomly generate a modality vector for the target modality in the style transfer stage, to simulate the domain shift for unknown domains. The model can be trained in a semi-supervised manner by simultaneously optimizing a supervised segmentation and an unsupervised style translation objective. Besides, the framework incorporates the spatial information and shape prior of the target by introducing two regularization terms. We evaluated the proposed framework on 40 subjects from the M\&Ms challenge2020, and obtained promising performance in the segmentation for data from unknown vendors and centers.Comment: 11 page
    • …
    corecore