1,026 research outputs found

    Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain Adaptation

    Full text link
    Despite the successes of deep neural networks on many challenging vision tasks, they often fail to generalize to new test domains that are not distributed identically to the training data. The domain adaptation becomes more challenging for cross-modality medical data with a notable domain shift. Given that specific annotated imaging modalities may not be accessible nor complete. Our proposed solution is based on the cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists and bridge the domain gap in radiological images. We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups. Built upon adversarial training, we propose a learnable self-attentive spatial normalization of the deep convolutional generator network's intermediate activations. Unlike previous attention-based image-to-image translation approaches, which are either domain-specific or require distortion of the source domain's structures, we unearth the importance of the auxiliary semantic information to handle the geometric changes and preserve anatomical structures during image translation. We achieve superior results for cross-modality segmentation between unpaired MRI and CT data for multi-modality whole heart and multi-modal brain tumor MRI (T1/T2) datasets compared to the state-of-the-art methods. We also observe encouraging results in cross-modality conversion for paired MRI and CT images on a brain dataset. Furthermore, a detailed analysis of the cross-modality image translation, thorough ablation studies confirm our proposed method's efficacy.Comment: Accepted for publication in IEEE Transactions on Medical Imaging (IEEE TMI

    DLOW: Domain Flow for Adaptation and Generalization

    Full text link
    In this work, we present a domain flow generation(DLOW) model to bridge two different domains by generating a continuous sequence of intermediate domains flowing from one domain to the other. The benefits of our DLOW model are two-fold. First, it is able to transfer source images into different styles in the intermediate domains. The transferred images smoothly bridge the gap between source and target domains, thus easing the domain adaptation task. Second, when multiple target domains are provided for training, our DLOW model is also able to generate new styles of images that are unseen in the training data. We implement our DLOW model based on CycleGAN. A domainness variable is introduced to guide the model to generate the desired intermediate domain images. In the inference phase, a flow of various styles of images can be obtained by varying the domainness variable. We demonstrate the effectiveness of our model for both cross-domain semantic segmentation and the style generalization tasks on benchmark datasets. Our implementation is available at https://github.com/ETHRuiGong/DLOW.Comment: Accepted to CVPR 2019 (oral

    XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings

    Full text link
    Style transfer usually refers to the task of applying color and texture information from a specific style image to a given content image while preserving the structure of the latter. Here we tackle the more generic problem of semantic style transfer: given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce XGAN ("Cross-GAN"), a dual adversarial autoencoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the model to preserve semantics in the learned embedding space. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset, CartoonSet, we collected for this purpose is publicly available at google.github.io/cartoonset/ as a new benchmark for semantic style transfer.Comment: Domain Adaptation for Visual Understanding at ICML'1

    Mix and match networks: cross-modal alignment for zero-pair image-to-image translation

    Full text link
    This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities.Comment: Accepted by IJC

    Semantics-Aware Image to Image Translation and Domain Transfer

    Full text link
    Image to image translation is the problem of transferring an image from a source domain to a target domain. We present a new method to transfer the underlying semantics of an image even when there are geometric changes across the two domains. Specifically, we present a Generative Adversarial Network (GAN) that can transfer semantic information presented as segmentation masks. Our main technical contribution is an encoder-decoder based generator architecture that jointly encodes the image and its underlying semantics and translates both simultaneously to the target domain. Additionally, we propose object transfiguration and cross-domain semantic consistency losses that preserve the underlying semantic labels maps. We demonstrate the effectiveness of our approach in multiple object transfiguration and domain transfer tasks through qualitative and quantitative experiments. The results show that our method is better at transferring image semantics than state of the art image to image translation methods

    AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation

    Full text link
    Supervised deep learning methods have shown promising results for the task of monocular depth estimation; but acquiring ground truth is costly, and prone to noise as well as inaccuracies. While synthetic datasets have been used to circumvent above problems, the resultant models do not generalize well to natural scenes due to the inherent domain shift. Recent adversarial approaches for domain adaption have performed well in mitigating the differences between the source and target domains. But these methods are mostly limited to a classification setup and do not scale well for fully-convolutional architectures. In this work, we propose AdaDepth - an unsupervised domain adaptation strategy for the pixel-wise regression task of monocular depth estimation. The proposed approach is devoid of above limitations through a) adversarial learning and b) explicit imposition of content consistency on the adapted target representation. Our unsupervised approach performs competitively with other established approaches on depth estimation tasks and achieves state-of-the-art results in a semi-supervised setting.Comment: CVPR 201

    Similarity-preserving Image-image Domain Adaptation for Person Re-identification

    Full text link
    This article studies the domain adaptation problem in person re-identification (re-ID) under a "learning via translation" framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised manner, 2) learning a re-ID model using the translated images. The objective is to preserve the underlying human identity information after image translation, so that translated images with labels are effective for feature learning on the target domain. To this end, we propose a similarity preserving generative adversarial network (SPGAN) and its end-to-end trainable version, eSPGAN. Both aiming at similarity preserving, SPGAN enforces this property by heuristic constraints, while eSPGAN does so by optimally facilitating the re-ID model learning. More specifically, SPGAN separately undertakes the two components in the "learning via translation" framework. It first preserves two types of unsupervised similarity, namely, self-similarity of an image before and after translation, and domain-dissimilarity of a translated source image and a target image. It then learns a re-ID model using existing networks. In comparison, eSPGAN seamlessly integrates image translation and re-ID model learning. During the end-to-end training of eSPGAN, re-ID learning guides image translation to preserve the underlying identity information of an image. Meanwhile, image translation improves re-ID learning by providing identity-preserving training samples of the target domain style. In the experiment, we show that identities of the fake images generated by SPGAN and eSPGAN are well preserved. Based on this, we report the new state-of-the-art domain adaptation results on two large-scale person re-ID datasets.Comment: 14 pages, 7 tables, 14 figures, this version is not fully edited and will be updated soon. arXiv admin note: text overlap with arXiv:1711.0702

    Sensor Transfer: Learning Optimal Sensor Effect Image Augmentation for Sim-to-Real Domain Adaptation

    Full text link
    Performance on benchmark datasets has drastically improved with advances in deep learning. Still, cross-dataset generalization performance remains relatively low due to the domain shift that can occur between two different datasets. This domain shift is especially exaggerated between synthetic and real datasets. Significant research has been done to reduce this gap, specifically via modeling variation in the spatial layout of a scene, such as occlusions, and scene environmental factors, such as time of day and weather effects. However, few works have addressed modeling the variation in the sensor domain as a means of reducing the synthetic to real domain gap. The camera or sensor used to capture a dataset introduces artifacts into the image data that are unique to the sensor model, suggesting that sensor effects may also contribute to domain shift. To address this, we propose a learned augmentation network composed of physically-based augmentation functions. Our proposed augmentation pipeline transfers specific effects of the sensor model -- chromatic aberration, blur, exposure, noise, and color temperature -- from a real dataset to a synthetic dataset. We provide experiments that demonstrate that augmenting synthetic training datasets with the proposed learned augmentation framework reduces the domain gap between synthetic and real domains for object detection in urban driving scenes

    Domain Adaptive Person Re-Identification via Camera Style Generation and Label Propagation

    Full text link
    Unsupervised domain adaptation in person re-identification resorts to labeled source data to promote the model training on target domain, facing the dilemmas caused by large domain shift and large camera variations. The non-overlapping labels challenge that source domain and target domain have entirely different persons further increases the re-identification difficulty. In this paper, we propose a novel algorithm to narrow such domain gaps. We derive a camera style adaptation framework to learn the style-based mappings between different camera views, from the target domain to the source domain, and then we can transfer the identity-based distribution from the source domain to the target domain on the camera level. To overcome the non-overlapping labels challenge and guide the person re-identification model to narrow the gap further, an efficient and effective soft-labeling method is proposed to mine the intrinsic local structure of the target domain through building the connection between GAN-translated source domain and the target domain. Experiment results conducted on real benchmark datasets indicate that our method gets state-of-the-art results

    One-Shot Unsupervised Cross Domain Translation

    Full text link
    Given a single image x from domain A and a set of images from domain B, our task is to generate the analogous of x in B. We argue that this task could be a key AI capability that underlines the ability of cognitive agents to act in the world and present empirical evidence that the existing unsupervised domain translation methods fail on this task. Our method follows a two step process. First, a variational autoencoder for domain B is trained. Then, given the new sample x, we create a variational autoencoder for domain A by adapting the layers that are close to the image in order to directly fit x, and only indirectly adapt the other layers. Our experiments indicate that the new method does as well, when trained on one sample x, as the existing domain transfer methods, when these enjoy a multitude of training samples from domain A. Our code is made publicly available at https://github.com/sagiebenaim/OneShotTranslationComment: Published at NIPS 201
    • …
    corecore