4,321 research outputs found

    Domain Adaptive Faster R-CNN for Object Detection in the Wild

    Full text link
    Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.Comment: Accepted to CVPR 201

    Exploring Object Relation in Mean Teacher for Cross-Domain Detection

    Full text link
    Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt on synthetic images may lead to high generalization error on real images due to domain shift. To address this issue, recent progress in cross-domain recognition has featured the Mean Teacher, which directly simulates unsupervised domain adaptation as semi-supervised learning. The domain gap is thus naturally bridged with consistency regularization in a teacher-student scheme. In this work, we advance this Mean Teacher paradigm to be applicable for cross-domain detection. Specifically, we present Mean Teacher with Object Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster R-CNN by integrating the object relations into the measure of consistency cost between teacher and student modules. Technically, MTOR firstly learns relational graphs that capture similarities between pairs of regions for teacher and student respectively. The whole architecture is then optimized with three consistency regularizations: 1) region-level consistency to align the region-level predictions between teacher and student, 2) inter-graph consistency for matching the graph structures between teacher and student, and 3) intra-graph consistency to enhance the similarity between regions of same class within the graph of student. Extensive experiments are conducted on the transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain a new record of single model: 22.8% of mAP on Syn2Real detection dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at: https://github.com/caiqi/mean-teacher-cross-domain-detectio

    Open Set Logo Detection and Retrieval

    Full text link
    Current logo retrieval research focuses on closed set scenarios. We argue that the logo domain is too large for this strategy and requires an open set approach. To foster research in this direction, a large-scale logo dataset, called Logos in the Wild, is collected and released to the public. A typical open set logo retrieval application is, for example, assessing the effectiveness of advertisement in sports event broadcasts. Given a query sample in shape of a logo image, the task is to find all further occurrences of this logo in a set of images or videos. Currently, common logo retrieval approaches are unsuitable for this task because of their closed world assumption. Thus, an open set logo retrieval method is proposed in this work which allows searching for previously unseen logos by a single query sample. A two stage concept with separate logo detection and comparison is proposed where both modules are based on task specific CNNs. If trained with the Logos in the Wild data, significant performance improvements are observed, especially compared with state-of-the-art closed set approaches.Comment: accepted at VISAPP 201
    • …
    corecore