23 research outputs found

    Document Clustering Based On Max-Correntropy Non-Negative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) has been successfully applied to many areas for classification and clustering. Commonly-used NMF algorithms mainly target on minimizing the l2l_2 distance or Kullback-Leibler (KL) divergence, which may not be suitable for nonlinear case. In this paper, we propose a new decomposition method by maximizing the correntropy between the original and the product of two low-rank matrices for document clustering. This method also allows us to learn the new basis vectors of the semantic feature space from the data. To our knowledge, we haven't seen any work has been done by maximizing correntropy in NMF to cluster high dimensional document data. Our experiment results show the supremacy of our proposed method over other variants of NMF algorithm on Reuters21578 and TDT2 databasets.Comment: International Conference of Machine Learning and Cybernetics (ICMLC) 201

    Image tag completion by local learning

    Full text link
    The problem of tag completion is to learn the missing tags of an image. In this paper, we propose to learn a tag scoring vector for each image by local linear learning. A local linear function is used in the neighborhood of each image to predict the tag scoring vectors of its neighboring images. We construct a unified objective function for the learning of both tag scoring vectors and local linear function parame- ters. In the objective, we impose the learned tag scoring vectors to be consistent with the known associations to the tags of each image, and also minimize the prediction error of each local linear function, while reducing the complexity of each local function. The objective function is optimized by an alternate optimization strategy and gradient descent methods in an iterative algorithm. We compare the proposed algorithm against different state-of-the-art tag completion methods, and the results show its advantages

    Sparse feature learning for image analysis in segmentation, classification, and disease diagnosis.

    Get PDF
    The success of machine learning algorithms generally depends on intermediate data representation, called features that disentangle the hidden factors of variation in data. Moreover, machine learning models are required to be generalized, in order to reduce the specificity or bias toward the training dataset. Unsupervised feature learning is useful in taking advantage of large amount of unlabeled data, which is available to capture these variations. However, learned features are required to capture variational patterns in data space. In this dissertation, unsupervised feature learning with sparsity is investigated for sparse and local feature extraction with application to lung segmentation, interpretable deep models, and Alzheimer\u27s disease classification. Nonnegative Matrix Factorization, Autoencoder and 3D Convolutional Autoencoder are used as architectures or models for unsupervised feature learning. They are investigated along with nonnegativity, sparsity and part-based representation constraints for generalized and transferable feature extraction

    Supervised cross-modal factor analysis for multiple modal data classification

    Full text link
    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., an image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods

    Non-negative Matrix Factorization: A Survey

    Get PDF
    CAUL read and publish agreement 2022Publishe

    Optimization algorithms for inference and classification of genetic profiles from undersampled measurements

    Get PDF
    In this thesis, we tackle three different problems, all related to optimization techniques for inference and classification of genetic profiles. First, we extend the deterministic Non-negative Matrix Factorization (NMF) framework to the probabilistic case (PNMF). We apply the PNMF algorithm to cluster and classify DNA microarrays data. The proposed PNMF is shown to outperform the deterministic NMF and the sparse NMF algorithms in clustering stability and classification accuracy. Second, we propose SMURC: Small-sample MUltivariate Regression with Covariance estimation. Specifically, we consider a high dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. We show that, in this case, the maximum likelihood approach is senseless because the likelihood diverges. We propose a normalization of the likelihood function that guarantees convergence. Simulation results show that SMURC outperforms the regularized likelihood estimator with known covariance matrix and the state-of-the-art sparse Conditional Graphical Gaussian Model (sCGGM). In the third Chapter, we derive a new greedy algorithm that provides an exact sparse solution of the combinatorial l sub zero-optimization problem in an exponentially less computation time. Unlike other greedy approaches, which are only approximations of the exact sparse solution, the proposed greedy approach, called Kernel reconstruction, leads to the exact optimal solution
    corecore