600 research outputs found

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    Random Walks on Hypergraphs with Edge-Dependent Vertex Weights

    Full text link
    Hypergraphs are used in machine learning to model higher-order relationships in data. While spectral methods for graphs are well-established, spectral theory for hypergraphs remains an active area of research. In this paper, we use random walks to develop a spectral theory for hypergraphs with edge-dependent vertex weights: hypergraphs where every vertex vv has a weight γe(v)\gamma_e(v) for each incident hyperedge ee that describes the contribution of vv to the hyperedge ee. We derive a random walk-based hypergraph Laplacian, and bound the mixing time of random walks on such hypergraphs. Moreover, we give conditions under which random walks on such hypergraphs are equivalent to random walks on graphs. As a corollary, we show that current machine learning methods that rely on Laplacians derived from random walks on hypergraphs with edge-independent vertex weights do not utilize higher-order relationships in the data. Finally, we demonstrate the advantages of hypergraphs with edge-dependent vertex weights on ranking applications using real-world datasets.Comment: Accepted to ICML 201

    Integration of multiple data sources to prioritize candidate genes using discounted rating system

    Get PDF
    Background: Identifying disease gene from a list of candidate genes is an important task in bioinformatics. The main strategy is to prioritize candidate genes based on their similarity to known disease genes. Most of existing gene prioritization methods access only one genomic data source, which is noisy and incomplete. Thus, there is a need for the integration of multiple data sources containing different information. Results: In this paper, we proposed a combination strategy, called discounted rating system (DRS). We performed leave one out cross validation to compare it with N-dimensional order statistics (NDOS) used in Endeavour. Results showed that the AUC (Area Under the Curve) values achieved by DRS were comparable with NDOS on most of the disease families. But DRS worked much faster than NDOS, especially when the number of data sources increases. When there are 100 candidate genes and 20 data sources, DRS works more than 180 times faster than NDOS. In the framework of DRS, we give different weights for different data sources. The weighted DRS achieved significantly higher AUC values than NDOS. Conclusion: The proposed DRS algorithm is a powerful and effective framework for candidate gene prioritization. If weights of different data sources are proper given, the DRS algorithm will perform better

    Discriminative Link Prediction using Local Links, Node Features and Community Structure

    Full text link
    A link prediction (LP) algorithm is given a graph, and has to rank, for each node, other nodes that are candidates for new linkage. LP is strongly motivated by social search and recommendation applications. LP techniques often focus on global properties (graph conductance, hitting or commute times, Katz score) or local properties (Adamic-Adar and many variations, or node feature vectors), but rarely combine these signals. Furthermore, neither of these extremes exploit link densities at the intermediate level of communities. In this paper we describe a discriminative LP algorithm that exploits two new signals. First, a co-clustering algorithm provides community level link density estimates, which are used to qualify observed links with a surprise value. Second, links in the immediate neighborhood of the link to be predicted are not interpreted at face value, but through a local model of node feature similarities. These signals are combined into a discriminative link predictor. We evaluate the new predictor using five diverse data sets that are standard in the literature. We report on significant accuracy boosts compared to standard LP methods (including Adamic-Adar and random walk). Apart from the new predictor, another contribution is a rigorous protocol for benchmarking and reporting LP algorithms, which reveals the regions of strengths and weaknesses of all the predictors studied here, and establishes the new proposal as the most robust.Comment: 10 pages, 5 figure

    Random Walk on Multiple Networks

    Full text link
    Random Walk is a basic algorithm to explore the structure of networks, which can be used in many tasks, such as local community detection and network embedding. Existing random walk methods are based on single networks that contain limited information. In contrast, real data often contain entities with different types or/and from different sources, which are comprehensive and can be better modeled by multiple networks. To take advantage of rich information in multiple networks and make better inferences on entities, in this study, we propose random walk on multiple networks, RWM. RWM is flexible and supports both multiplex networks and general multiple networks, which may form many-to-many node mappings between networks. RWM sends a random walker on each network to obtain the local proximity (i.e., node visiting probabilities) w.r.t. the starting nodes. Walkers with similar visiting probabilities reinforce each other. We theoretically analyze the convergence properties of RWM. Two approximation methods with theoretical performance guarantees are proposed for efficient computation. We apply RWM in link prediction, network embedding, and local community detection. Comprehensive experiments conducted on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of RWM.Comment: Accepted to IEEE TKD
    corecore