901 research outputs found

    Unsupervised ensemble of experts (EoE) framework for automatic binarization of document images

    Full text link
    In recent years, a large number of binarization methods have been developed, with varying performance generalization and strength against different benchmarks. In this work, to leverage on these methods, an ensemble of experts (EoE) framework is introduced, to efficiently combine the outputs of various methods. The proposed framework offers a new selection process of the binarization methods, which are actually the experts in the ensemble, by introducing three concepts: confidentness, endorsement and schools of experts. The framework, which is highly objective, is built based on two general principles: (i) consolidation of saturated opinions and (ii) identification of schools of experts. After building the endorsement graph of the ensemble for an input document image based on the confidentness of the experts, the saturated opinions are consolidated, and then the schools of experts are identified by thresholding the consolidated endorsement graph. A variation of the framework, in which no selection is made, is also introduced that combines the outputs of all experts using endorsement-dependent weights. The EoE framework is evaluated on the set of participating methods in the H-DIBCO'12 contest and also on an ensemble generated from various instances of grid-based Sauvola method with promising performance.Comment: 6-page version, Accepted to be presented in ICDAR'1

    From hyperconnections to hypercomponent tree: Application to document image binarization

    Get PDF
    International audienceIn this paper, we propose an extension of the component tree based on at zones to hyperconnections (h-connections). The tree is dened by a special order on the h-connection and allows non at nodes. We apply this method to a particular fuzzy h-connection and we give an ecient algorithm to transform the component tree into the new fuzzy h-component tree. Finally, we propose a method to binarize document images based on the h-component tree and we evaluate it on the DIBCO 2009 benchmarking dataset: our novel method places rst or second according to the dierent evaluation measures. Hierarchical and tree based representations have become very topical in image processing. In particular, the component tree (or Max-Tree) has been the subject of many studies and practical works. Nevertheless, the component tree inherits the weaknesses of the at zone approach, namely its high sensitivity to noise, gradients and diculty to manage disconnected objects. Even if some solutions have been proposed to preserve the component tree [5, 4], it seems that a more general framework for grayscale component tree [1] based on non at zones becomes necessary. In this article, we propose a method to design grayscale component tree based on h-connections. The h-connection theory has been proposed in [7] and developed in [1, 3, 4, 8, 9]. It provides a general denition of the notion of connected component in arbitrary lattices. In Sec. 2, we present the h-connection theory and a method to generate a related hierarchical representation. This method is applied to a fuzzy h-connection in Sec. 3 where an algorithm is given to transform a Max-Tree into the new grayscale component tree. In Sec. 4, we illustrate the interest of this tree with an application on document image binarization. 2 H-component Tree This section presents the basis of the h-connection theory [7, 1] and gives a denition of the h-component tree. The construction of the tree is based on the z-zones [1] of the h-connection, together with a special partial ordering. Z-zones are particular regions where all points generate the same set of hyperconnected (h-connected) components and the entire image can be divided into such zones. Under a given condition, the Hasse diagram obtained in this way is acyclic and provides a tree representation. Let L be a complete lattice furnished with the partial ordering ≤, the inmum , the supremum. The least element of L is denoted by ⊥ = L. We assume the existence of a sup-generatin

    Text Localization in Video Using Multiscale Weber's Local Descriptor

    Full text link
    In this paper, we propose a novel approach for detecting the text present in videos and scene images based on the Multiscale Weber's Local Descriptor (MWLD). Given an input video, the shots are identified and the key frames are extracted based on their spatio-temporal relationship. From each key frame, we detect the local region information using WLD with different radius and neighborhood relationship of pixel values and hence obtained intensity enhanced key frames at multiple scales. These multiscale WLD key frames are merged together and then the horizontal gradients are computed using morphological operations. The obtained results are then binarized and the false positives are eliminated based on geometrical properties. Finally, we employ connected component analysis and morphological dilation operation to determine the text regions that aids in text localization. The experimental results obtained on publicly available standard Hua, Horizontal-1 and Horizontal-2 video dataset illustrate that the proposed method can accurately detect and localize texts of various sizes, fonts and colors in videos.Comment: IEEE SPICES, 201

    Multivariate Techniques for Identifying Diffractive Interactions at the LHC

    Get PDF
    31 pages, 14 figures, 11 tablesClose to one half of the LHC events are expected to be due to elastic or inelastic diffractive scattering. Still, predictions based on extrapolations of experimental data at lower energies differ by large factors in estimating the relative rate of diffractive event categories at the LHC energies. By identifying diffractive events, detailed studies on proton structure can be carried out. The combined forward physics objects: rapidity gaps, forward multiplicity and transverse energy flows can be used to efficiently classify proton-proton collisions. Data samples recorded by the forward detectors, with a simple extension, will allow first estimates of the single diffractive (SD), double diffractive (DD), central diffractive (CD), and non-diffractive (ND) cross sections. The approach, which uses the measurement of inelastic activity in forward and central detector systems, is complementary to the detection and measurement of leading beam-like protons. In this investigation, three different multivariate analysis approaches are assessed in classifying forward physics processes at the LHC. It is shown that with gene expression programming, neural networks and support vector machines, diffraction can be efficiently identified within a large sample of simulated proton-proton scattering events. The event characteristics are visualized by using the self-organizing map algorithm.Peer reviewe
    • …
    corecore