2,426 research outputs found

    Efficient Image Gallery Representations at Scale Through Multi-Task Learning

    Full text link
    Image galleries provide a rich source of diverse information about a product which can be leveraged across many recommendation and retrieval applications. We study the problem of building a universal image gallery encoder through multi-task learning (MTL) approach and demonstrate that it is indeed a practical way to achieve generalizability of learned representations to new downstream tasks. Additionally, we analyze the relative predictive performance of MTL-trained solutions against optimal and substantially more expensive solutions, and find signals that MTL can be a useful mechanism to address sparsity in low-resource binary tasks.Comment: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieva

    ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation

    Full text link
    Deep neural networks are vulnerable to adversarial attacks. The literature is rich with algorithms that can easily craft successful adversarial examples. In contrast, the performance of defense techniques still lags behind. This paper proposes ME-Net, a defense method that leverages matrix estimation (ME). In ME-Net, images are preprocessed using two steps: first pixels are randomly dropped from the image; then, the image is reconstructed using ME. We show that this process destroys the adversarial structure of the noise, while re-enforcing the global structure in the original image. Since humans typically rely on such global structures in classifying images, the process makes the network mode compatible with human perception. We conduct comprehensive experiments on prevailing benchmarks such as MNIST, CIFAR-10, SVHN, and Tiny-ImageNet. Comparing ME-Net with state-of-the-art defense mechanisms shows that ME-Net consistently outperforms prior techniques, improving robustness against both black-box and white-box attacks.Comment: ICML 201

    Can deep learning help you find the perfect match?

    Full text link
    Is he/she my type or not? The answer to this question depends on the personal preferences of the one asking it. The individual process of obtaining a full answer may generally be difficult and time consuming, but often an approximate answer can be obtained simply by looking at a photo of the potential match. Such approximate answers based on visual cues can be produced in a fraction of a second, a phenomenon that has led to a series of recently successful dating apps in which users rate others positively or negatively using primarily a single photo. In this paper we explore using convolutional networks to create a model of an individual's personal preferences based on rated photos. This introduced task is difficult due to the large number of variations in profile pictures and the noise in attractiveness labels. Toward this task we collect a dataset comprised of 93649364 pictures and binary labels for each. We compare performance of convolutional models trained in three ways: first directly on the collected dataset, second with features transferred from a network trained to predict gender, and third with features transferred from a network trained on ImageNet. Our findings show that ImageNet features transfer best, producing a model that attains 68.1%68.1\% accuracy on the test set and is moderately successful at predicting matches

    Collaborative Feature Learning from Social Media

    Full text link
    Image feature representation plays an essential role in image recognition and related tasks. The current state-of-the-art feature learning paradigm is supervised learning from labeled data. However, this paradigm requires large-scale category labels, which limits its applicability to domains where labels are hard to obtain. In this paper, we propose a new data-driven feature learning paradigm which does not rely on category labels. Instead, we learn from user behavior data collected on social media. Concretely, we use the image relationship discovered in the latent space from the user behavior data to guide the image feature learning. We collect a large-scale image and user behavior dataset from Behance.net. The dataset consists of 1.9 million images and over 300 million view records from 1.9 million users. We validate our feature learning paradigm on this dataset and find that the learned feature significantly outperforms the state-of-the-art image features in learning better image similarities. We also show that the learned feature performs competitively on various recognition benchmarks

    Optimizing E-Commerce Product Classification Using Transfer Learning

    Get PDF
    The global e-commerce market is snowballing at a rate of 23% per year. In 2017, retail e-commerce users were 1.66 billion and sales worldwide amounted to 2.3 trillion US dollars, and e-retail revenues are projected to grow to 4.88 trillion USD in 2021. With the immense popularity that e-commerce has gained over past few years comes the responsibility to deliver relevant results to provide rich user experience. In order to do this, it is essential that the products on the ecommerce website be organized correctly into their respective categories. Misclassification of products leads to irrelevant results for users which not just reflects badly on the website, it could also lead to lost customers. With ecommerce sites nowadays providing their portal as a platform for third party merchants to sell their products as well, maintaining a consistency in product categorization becomes difficult. Therefore, automating this process could be of great utilization. This task of automation done on the basis of text could lead to discrepancies since the website itself, its various merchants, and users, all could use different terminologies for a product and its category. Thus, using images becomes a plausible solution for this problem. Dealing with images can best be done using deep learning in the form of convolutional neural networks. This is a computationally expensive task, and in order to keep the accuracy of a traditional convolutional neural network while reducing the hours it takes for the model to train, this project aims at using a technique called transfer learning. Transfer learning refers to sharing the knowledge gained from one task for another where new model does not need to be trained from scratch in order to reduce the time it takes for training. This project aims at using various product images belonging to five categories from an ecommerce platform and developing an algorithm that can accurately classify products in their respective categories while taking as less time as possible. The goal is to first test the performance of transfer learning against traditional convolutional networks. Then the next step is to apply transfer learning to the downloaded dataset and assess its performance on the accuracy and time taken to classify test data that the model has never seen before
    • …
    corecore