5,320 research outputs found

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Decentralized learning with budgeted network load using Gaussian copulas and classifier ensembles

    Get PDF
    We examine a network of learners which address the same classification task but must learn from different data sets. The learners cannot share data but instead share their models. Models are shared only one time so as to preserve the network load. We introduce DELCO (standing for Decentralized Ensemble Learning with COpulas), a new approach allowing to aggregate the predictions of the classifiers trained by each learner. The proposed method aggregates the base classifiers using a probabilistic model relying on Gaussian copulas. Experiments on logistic regressor ensembles demonstrate competing accuracy and increased robustness in case of dependent classifiers. A companion python implementation can be downloaded at https://github.com/john-klein/DELC

    Reducing the Effects of Detrimental Instances

    Full text link
    Not all instances in a data set are equally beneficial for inducing a model of the data. Some instances (such as outliers or noise) can be detrimental. However, at least initially, the instances in a data set are generally considered equally in machine learning algorithms. Many current approaches for handling noisy and detrimental instances make a binary decision about whether an instance is detrimental or not. In this paper, we 1) extend this paradigm by weighting the instances on a continuous scale and 2) present a methodology for measuring how detrimental an instance may be for inducing a model of the data. We call our method of identifying and weighting detrimental instances reduced detrimental instance learning (RDIL). We examine RIDL on a set of 54 data sets and 5 learning algorithms and compare RIDL with other weighting and filtering approaches. RDIL is especially useful for learning algorithms where every instance can affect the classification boundary and the training instances are considered individually, such as multilayer perceptrons trained with backpropagation (MLPs). Our results also suggest that a more accurate estimate of which instances are detrimental can have a significant positive impact for handling them.Comment: 6 pages, 5 tables, 2 figures. arXiv admin note: substantial text overlap with arXiv:1403.189
    • …
    corecore