2,227 research outputs found

    Cyclic Distributed Space–Time Codes for Wireless Relay Networks With No Channel Information

    Get PDF
    In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver, or relays. The coding scheme uses distributed space–time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver senses a space–time codeword. It is inspired by noncoherent differential techniques. The proposed strategy is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the number of relays. We also study the resistance of the scheme to relay node failures, and show that a network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network with R-d nodes. Finally, our construction can be easily generalized to the case where the transmitter and receiver nodes have several antennas

    STiCMAC: A MAC Protocol for Robust Space-Time Coding in Cooperative Wireless LANs

    Full text link
    Relay-assisted cooperative wireless communication has been shown to have significant performance gains over the legacy direct transmission scheme. Compared with single relay based cooperation schemes, utilizing multiple relays further improves the reliability and rate of transmissions. Distributed space-time coding (DSTC), as one of the schemes to utilize multiple relays, requires tight coordination between relays and does not perform well in a distributed environment with mobility. In this paper, a cooperative medium access control (MAC) layer protocol, called \emph{STiCMAC}, is designed to allow multiple relays to transmit at the same time in an IEEE 802.11 network. The transmission is based on a novel DSTC scheme called \emph{randomized distributed space-time coding} (\emph{R-DSTC}), which requires minimum coordination. Unlike conventional cooperation schemes that pick nodes with good links, \emph{STiCMAC} picks a \emph{transmission mode} that could most improve the end-to-end data rate. Any station that correctly receives from the source can act as a relay and participate in forwarding. The MAC protocol is implemented in a fully decentralized manner and is able to opportunistically recruit relays on the fly, thus making it \emph{robust} to channel variations and user mobility. Simulation results show that the network capacity and delay performance are greatly improved, especially in a mobile environment.Comment: This paper is a revised version of a paper with the same name submitted to IEEE Transaction on Wireless Communications. STiCMAC protocol with RTS/CTS turned off is presented in the appendix of this draf

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201

    Cooperative Symbol-Based Signaling for Networks with Multiple Relays

    Get PDF
    Wireless channels suffer from severe inherent impairments and hence reliable and high data rate wireless transmission is particularly challenging to achieve. Fortunately, using multiple antennae improves performance in wireless transmission by providing space diversity, spatial multiplexing, and power gains. However, in wireless ad-hoc networks multiple antennae may not be acceptable due to limitations in size, cost, and hardware complexity. As a result, cooperative relaying strategies have attracted considerable attention because of their abilities to take advantage of multi-antenna by using multiple single-antenna relays. This study is to explore cooperative signaling for different relay networks, such as multi-hop relay networks formed by multiple single-antenna relays and multi-stage relay networks formed by multiple relaying stages with each stage holding several single-antenna relays. The main contribution of this study is the development of a new relaying scheme for networks using symbol-level modulation, such as binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK). We also analyze effects of this newly developed scheme when it is used with space-time coding in a multi-stage relay network. Simulation results demonstrate that the new scheme outperforms previously proposed schemes: amplify-and-forward (AF) scheme and decode-and-forward (DF) scheme

    Relay Selection with Network Coding in Two-Way Relay Channels

    Full text link
    In this paper, we consider the design of joint network coding (NC)and relay selection (RS) in two-way relay channels. In the proposed schemes, two users first sequentially broadcast their respective information to all the relays. We propose two RS schemes, a single relay selection with NC and a dual relay selection with NC. For both schemes, the selected relay(s) perform NC on the received signals sent from the two users and forward them to both users. The proposed schemes are analyzed and the exact bit error rate (BER) expressions are derived and verified through Monte Carlo simulations. It is shown that the dual relay selection with NC outperforms other considered relay selection schemes in two-way relay channels. The results also reveal that the proposed NC relay selection schemes provide a selection gain compared to a NC scheme with no relay selection, and a network coding gain relative to a conventional relay selection scheme with no NC.Comment: 11 pages, 5 figure
    corecore