3 research outputs found

    Diversity Order Gain with Noisy Feedback in Multiple Access Channels

    Full text link
    In this paper, we study the effect of feedback channel noise on the diversity-multiplexing tradeoff in multiuser MIMO systems using quantized feedback, where each user has m transmit antennas and the base-station receiver has n antennas. We derive an achievable tradeoff and use it to show that in SNR-symmetric channels, a single bit of imperfect feedback is sufficient to double the maximum diversity order to 2mn compared to when there is no feedback (maximum is mn at multiplexing gain of zero). Further, additional feedback bits do not increase this maximum diversity order beyond 2mn. Finally, the above diversity order gain of mn over non-feedback systems can also be achieved for higher multiplexing gains, albeit requiring more than one bit of feedback.Comment: Proceedings of the 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, July 6 - 11, 200

    Bits About the Channel: Multi-round Protocols for Two-way Fading Channels

    Full text link
    Most communication systems use some form of feedback, often related to channel state information. In this paper, we study diversity multiplexing tradeoff for both FDD and TDD systems, when both receiver and transmitter knowledge about the channel is noisy and potentially mismatched. For FDD systems, we first extend the achievable tradeoff region for 1.5 rounds of message passing to get higher diversity compared to the best known scheme, in the regime of higher multiplexing gains. We then break the mold of all current channel state based protocols by using multiple rounds of conferencing to extract more bits about the actual channel. This iterative refinement of the channel increases the diversity order with every round of communication. The protocols are on-demand in nature, using high powers for training and feedback only when the channel is in poor states. The key result is that the diversity multiplexing tradeoff with perfect training and K levels of perfect feedback can be achieved, even when there are errors in training the receiver and errors in the feedback link, with a multi-round protocol which has K rounds of training and K-1 rounds of binary feedback. The above result can be viewed as a generalization of Zheng and Tse, and Aggarwal and Sabharwal, where the result was shown to hold for K=1 and K=2 respectively. For TDD systems, we also develop new achievable strategies with multiple rounds of communication between the transmitter and the receiver, which use the reciprocity of the forward and the feedback channel. The multi-round TDD protocol achieves a diversity-multiplexing tradeoff which uniformly dominates its FDD counterparts, where no channel reciprocity is available.Comment: Submitted to IEEE Transactions on Information Theor

    Power-Controlled Feedback and Training for Two-way MIMO Channels

    Full text link
    Most communication systems use some form of feedback, often related to channel state information. The common models used in analyses either assume perfect channel state information at the receiver and/or noiseless state feedback links. However, in practical systems, neither is the channel estimate known perfectly at the receiver and nor is the feedback link perfect. In this paper, we study the achievable diversity multiplexing tradeoff using i.i.d. Gaussian codebooks, considering the errors in training the receiver and the errors in the feedback link for FDD systems, where the forward and the feedback are independent MIMO channels. Our key result is that the maximum diversity order with one-bit of feedback information is identical to systems with more feedback bits. Thus, asymptotically in SNR\mathsf{SNR}, more than one bit of feedback does not improve the system performance at constant rates. Furthermore, the one-bit diversity-multiplexing performance is identical to the system which has perfect channel state information at the receiver along with noiseless feedback link. This achievability uses novel concepts of power controlled feedback and training, which naturally surface when we consider imperfect channel estimation and noisy feedback links. In the process of evaluating the proposed training and feedback protocols, we find an asymptotic expression for the joint probability of the SNR\mathsf{SNR} exponents of eigenvalues of the actual channel and the estimated channel which may be of independent interest.Comment: in IEEE Transactions on Information Theory, 201
    corecore