72 research outputs found

    Performance analysis of modified asymmetrically-clipped optical orthogonal frequency-division multiplexing systems

    Get PDF
    A modification to the Asymmetrically-Clipped Optical Orthogonal Frequency-Division Multiplexing (ACO-OFDM) technique is proposed through unipolar encoding. A performance analysis of the Bit Error Rate (BER) is developed and Monte Carlo simulations are carried out to verify the analysis. Results are compared to that of the corresponding ACO-OFDM system under the same bit energy and transmission rate; an improvement of 1 dB is obtained at a BER of 10-4. In addition, the performance of the proposed system in the presence of atmospheric turbulence is investigated using single-input multiple-output (SIMO) configuration and its performance under that environment is compared to that of ACO-OFDM. Energy improvements of 4 dB and 2.2 dB are obtained at a BER of 10-4 for SIMO systems of 1 and 2 photodetectors at the receiver for the case of strong turbulence, respectively

    OFDM Systems for Optical Communication with Intensity Modulation and Direct Detection

    Get PDF
    Intensity modulation and direct detection (IM/DD) is a cost-effective optical communication strategy which finds wide applications in fiber communication, free-space optical communication, and indoor visible light communication. In IM/DD, orthogonal frequency division multiplexing (OFDM), originally employed in radio frequency communication, is considered as a strong candidate solution to combat with channel distortions. In this research, we investigate various potential OFDM forms that are suitable for IM/DD channel. We will elaborate the design principles of different OFDM transmitters and investigate different types of receivers including the proposed iterative receiver. In addition, we will analyze the spectral efficiency and decoding complexities of different OFDM systems to give a whole picture of their performance. Finally, simulation results are given to assess the detection performance of different receivers

    Interference cancellation for layered asymmetrically clipped optical OFDM with application to optical receiver design

    Full text link
    © 1983-2012 IEEE. In this paper, we study a novel two-stage receiver to demodulate layered asymmetrically clipped optical orthogonal frequency division multiplexing for intensity modulation direct detection based visible light communications. Designed for avoiding the error propagation of the conventional receiver, the first stage of the receiver is a soft interference cancellation (SIC) module which evaluates the minimum mean square error (MMSE) estimates of the signals in different layers. For this stage, we derive the exact formula of the MMSE estimator, and compare the achieved mean square error and bit error rate (BER) with those of the existing simplified SIC receiver. We show that the estimation error in a layer has negligible impact on the design of estimators in the subsequent layers. Using the outputs of the SIC module, the second stage performs noise clipping to suppress the additive noise. For this stage, we present two schemes, the SIC-based iterative noise clipping (SIC-INC) and the SIC-based direct noise clipping (SIC-DNC). The simulation results show that SIC-INC can achieve BERs similar to those of the SIC-based diversity combining receiver with optimum combining coefficients. It is also shown that SIC-DNC outperforms the existing advanced receivers by up to 0.8 dB at the BER of 10{-4}

    System design and performance analysis of asymmetrically and symmetrically clipped optical (ASCO)-OFDM for IM/DD optical wireless communications

    Get PDF
    As the quantity of mobile communication devices, such as cellphones, tablets, and laptops, dramatically increase, the demand for high speed wireless service has been growing. Optical wireless communications (OWCs), which offer unlimited transmission bandwidth, have received a lot of attention and been studied in recent decades. They can be an effective alternative to radio frequency communications (RFCs) for indoor high speed data transmission. Intensity modulation direct detection (IM/DD) is a simple way to realize the transmission of optical wireless signals in an indoor environment. Information data streams are modulated into the intensity of optical carriers and transmitted by light emitting diodes (LEDs). At the receiver, the instantaneous power of optical signals can be directly detected by photodiodes. Multipath distortion, especially in an indoor environment, caused by reflection from walls or furniture, severely affects the transmission quality of optical signals. Orthogonal frequency division multiplexing (OFDM) is a promising modulation technique and has been widely used to combat inter-symbol-interference (ISI) resulting from multipath propagation in RFCs. So far, the technique of OFDM has also been successfully applied into IM/DD optical wireless systems. In this dissertation, the author focuses on the system design and performance analysis of a novel power-efficient scheme based on OFDM for IM/DD OWCs. This dissertation is divided into four main sections. In the first part, a novel power-efficient scheme, called asymmetrically and symmetrically clipped optical (ASCO)-OFDM, for intensity modulation direct detection (IM/DD) optical wireless systems is proposed. The average bit rate versus (vs.) normalized bandwidth and the optical power per bit of this novel scheme are expressed by a closed form, respectively. The symbol error rate (SER) performance is investigated when optical signals are transmitted in a flat fading channel. Simulation results show that this proposed scheme can achieve better performances in terms of both power efficiency and symbol error rate (SER) when the optical power of transmitted signals is limited. In the second part, an improved receiving technique is applied into the conventional receiver of ASCO-OFDM to improve the SER performance. This technique can explore and reuse some useful information hidden in the received signals. The detection procedure is described in detail and the improved SER performances are presented for different constellation cases. In the third part, the information rates of ADO-OFDM and ASCO-OFDM are obtained for an additive white Gaussian noise (AWGN) channel with an average transmitted optical power constraint. In the last part, this novel power efficient scheme, ASCO-OFDM, is extended into two-dimensional (2D) IM/DD optical wireless systems. The theoretical analysis and simulation results show that this technique not only achieves high average bit rate, but reduces the Peak-to-average power ratio (PAPR) as well

    A novel unipolar transmission scheme for visible light communication

    Get PDF
    This paper proposes a novel unipolar transceiver for visible light communication (VLC) by using orthogonal waveforms. The main advantage of our proposed scheme over most of the existing unipolar schemes in the literature is that the polarity of the real-valued orthogonal frequency division multiplexing (OFDM) sample determines the pulse shape of the continuous-time signal and thus, the unipolar conversion is performed directly in the analog instead of the digital domain. Therefore, our proposed scheme does not require any direct current (DC) biasing or clipping as it is the case with existing schemes in the literature. The bit error rate (BER) performance of our proposed scheme is analytically derived and its accuracy is verified by using Matlab simulations. Simulation results also substantiate the potential performance gains of our proposed scheme against the state-of-the-art OFDM-based systems in VLC; it indicates that the absence of DC shift and clipping in our scheme supports more reliable communication and outperforms the asymmetrically clipped optical-OFDM (ACO-OFDM), DC optical-OFDM (DCO-OFDM) and unipolar-OFDM (U-OFDM) schemes. For instance, our scheme outperforms ACO-OFDM by at least 3 dB (in terms of signal to noise ratio) at a target BER of 10 −4 , when considering the same spectral efficiency for both schemes

    Ergodic Capacity and Error Performance of Spatial Diversity UWOC Systems over Generalized Gamma Turbulence Channels

    Get PDF
    In this paper, we study the ergodic capacity (EC) and average bit error rate (BER) of spatial diversity underwater wireless optical communications (UWOC) over the generalized gamma (GG) fading channels using quadrature amplitude modulation (QAM) direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM). We derive closed-form expressions of the EC and BER for the spatial diversity UWOC with the equal gain combining (EGC) at receivers based on the approximation of the sum of independent identical distributed (i.i.d) GG random variables (RVs). Numerical results of EC and BER for QAM DCO-OFDM spatial diversity systems over GG fading channels are presented. The numerical results are shown to be closely matched by the Monte Carlo simulations, verifying the analysis. The study clearly shows the adverse effect of turbulence on the EC & BER and advantage of EGC to overcome the turbulence effect

    Mitigation of Side-Effect Modulation in Optical OFDM VLC Systems

    Full text link
    Side-effect modulation (SEM) has the potential to be a significant source of interference in future visible light communication (VLC) systems. SEM is a variation in the intensity of the light emitted by a luminaire and is usually a side-effect caused by the power supply used to drive the luminaires. For LED luminaires powered by a switched mode power supply, the SEM can be at much higher frequencies than that emitted by conventional incandescent or fluorescent lighting. It has been shown that the SEM caused by commercially available LED luminaires is often periodic and of low power. In this paper, we investigate the impact of typical forms of SEM on the performance of optical OFDM VLC systems; both ACO-OFDM and DCO-OFDM are considered. Our results show that even low levels of SEM power can significantly degrade the bit-error-rate performance. To solve this problem, an SEM mitigation scheme is described. The mitigation scheme is decision-directed and is based on estimating and subtracting the fundamental component of the SEM from the received signal. We describe two forms of the algorithm; one uses blind estimation while the other uses pilot-assisted estimation based on a training sequence. Decision errors, resulting in decision noise, limit the performance of the blind estimator even when estimation is based on very long signals. However, the pilot system can achieve more accurate estimations, thus better performance. Results are first presented for typical SEM waveforms for the case where the fundamental frequency of the SEM is known. The algorithms are then extended to include a frequency estimation step and the mitigation algorithm is shown also to be effective in this case
    • …
    corecore