2,941 research outputs found

    On surrogate loss functions and ff-divergences

    Full text link
    The goal of binary classification is to estimate a discriminant function γ\gamma from observations of covariate vectors and corresponding binary labels. We consider an elaboration of this problem in which the covariates are not available directly but are transformed by a dimensionality-reducing quantizer QQ. We present conditions on loss functions such that empirical risk minimization yields Bayes consistency when both the discriminant function and the quantizer are estimated. These conditions are stated in terms of a general correspondence between loss functions and a class of functionals known as Ali-Silvey or ff-divergence functionals. Whereas this correspondence was established by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951) 93--102. Univ. California Press, Berkeley] for the 0--1 loss, we extend the correspondence to the broader class of surrogate loss functions that play a key role in the general theory of Bayes consistency for binary classification. Our result makes it possible to pick out the (strict) subset of surrogate loss functions that yield Bayes consistency for joint estimation of the discriminant function and the quantizer.Comment: Published in at http://dx.doi.org/10.1214/08-AOS595 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A structured prediction approach for robot imitation learning

    Get PDF
    We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised learning that enables learning models to operate on output spaces with complex structures. Through the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions based on the f-divergence to measure the information loss between the demonstrated and reproduced probabilistic trajectories. Different types of f-divergence will result in different policies, which we call imitation modes. Furthermore, our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework

    A Structured Prediction Approach for Robot Imitation Learning

    Full text link
    We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised learning that enables learning models to operate on output spaces with complex structures. Through the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions based on the f-divergence to measure the information loss between the demonstrated and reproduced probabilistic trajectories. Different types of f-divergence will result in different policies, which we call imitation modes. Furthermore, our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework
    • …
    corecore