374 research outputs found

    Results on lattice vector quantization with dithering

    Get PDF
    The statistical properties of the error in uniform scalar quantization have been analyzed by a number of authors in the past, and is a well-understood topic today. The analysis has also been extended to the case of dithered quantizers, and the advantages and limitations of dithering have been studied and well documented in the literature. Lattice vector quantization is a natural extension into multiple dimensions of the uniform scalar quantization. Accordingly, there is a natural extension of the analysis of the quantization error. It is the purpose of this paper to present this extension and to elaborate on some of the new aspects that come with multiple dimensions. We show that, analogous to the one-dimensional case, the quantization error vector can be rendered independent of the input in subtractive vector-dithering. In this case, the total mean square error is a function of only the underlying lattice and there are lattices that minimize this error. We give a necessary condition on such lattices. In nonsubtractive vector dithering, we show how to render moments of the error vector independent of the input by using appropriate dither random vectors. These results can readily be applied for the case of wide sense stationary (WSS) vector random processes, by use of iid dither sequences. We consider the problem of pre- and post-filtering around a dithered lattice quantifier, and show how these filters should be designed in order to minimize the overall quantization error in the mean square sense. For the special case where the WSS vector process is obtained by blocking a WSS scalar process, the optimum prefilter matrix reduces to the blocked version of the well-known scalar half-whitening filter

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Multiple-Description Coding by Dithered Delta-Sigma Quantization

    Get PDF
    We address the connection between the multiple-description (MD) problem and Delta-Sigma quantization. The inherent redundancy due to oversampling in Delta-Sigma quantization, and the simple linear-additive noise model resulting from dithered lattice quantization, allow us to construct a symmetric and time-invariant MD coding scheme. We show that the use of a noise shaping filter makes it possible to trade off central distortion for side distortion. Asymptotically as the dimension of the lattice vector quantizer and order of the noise shaping filter approach infinity, the entropy rate of the dithered Delta-Sigma quantization scheme approaches the symmetric two-channel MD rate-distortion function for a memoryless Gaussian source and MSE fidelity criterion, at any side-to-central distortion ratio and any resolution. In the optimal scheme, the infinite-order noise shaping filter must be minimum phase and have a piece-wise flat power spectrum with a single jump discontinuity. An important advantage of the proposed design is that it is symmetric in rate and distortion by construction, so the coding rates of the descriptions are identical and there is therefore no need for source splitting.Comment: Revised, restructured, significantly shortened and minor typos has been fixed. Accepted for publication in the IEEE Transactions on Information Theor

    Asymptotic Task-Based Quantization with Application to Massive MIMO

    Get PDF
    Quantizers take part in nearly every digital signal processing system which operates on physical signals. They are commonly designed to accurately represent the underlying signal, regardless of the specific task to be performed on the quantized data. In systems working with high-dimensional signals, such as massive multiple-input multiple-output (MIMO) systems, it is beneficial to utilize low-resolution quantizers, due to cost, power, and memory constraints. In this work we study quantization of high-dimensional inputs, aiming at improving performance under resolution constraints by accounting for the system task in the quantizers design. We focus on the task of recovering a desired signal statistically related to the high-dimensional input, and analyze two quantization approaches: We first consider vector quantization, which is typically computationally infeasible, and characterize the optimal performance achievable with this approach. Next, we focus on practical systems which utilize hardware-limited scalar uniform analog-to-digital converters (ADCs), and design a task-based quantizer under this model. The resulting system accounts for the task by linearly combining the observed signal into a lower dimension prior to quantization. We then apply our proposed technique to channel estimation in massive MIMO networks. Our results demonstrate that a system utilizing low-resolution scalar ADCs can approach the optimal channel estimation performance by properly accounting for the task in the system design

    Constructing practical Fuzzy Extractors using QIM

    Get PDF
    Fuzzy extractors are a powerful tool to extract randomness from noisy data. A fuzzy extractor can extract randomness only if the source data is discrete while in practice source data is continuous. Using quantizers to transform continuous data into discrete data is a commonly used solution. However, as far as we know no study has been made of the effect of the quantization strategy on the performance of fuzzy extractors. We construct the encoding and the decoding function of a fuzzy extractor using quantization index modulation (QIM) and we express properties of this fuzzy extractor in terms of parameters of the used QIM. We present and analyze an optimal (in the sense of embedding rate) two dimensional construction. Our 6-hexagonal tiling construction offers ( log2 6 / 2-1) approx. 3 extra bits per dimension of the space compared to the known square quantization based fuzzy extractor

    Randomized Quantization and Source Coding with Constrained Output Distribution

    Full text link
    This paper studies fixed-rate randomized vector quantization under the constraint that the quantizer's output has a given fixed probability distribution. A general representation of randomized quantizers that includes the common models in the literature is introduced via appropriate mixtures of joint probability measures on the product of the source and reproduction alphabets. Using this representation and results from optimal transport theory, the existence of an optimal (minimum distortion) randomized quantizer having a given output distribution is shown under various conditions. For sources with densities and the mean square distortion measure, it is shown that this optimum can be attained by randomizing quantizers having convex codecells. For stationary and memoryless source and output distributions a rate-distortion theorem is proved, providing a single-letter expression for the optimum distortion in the limit of large block-lengths.Comment: To appear in the IEEE Transactions on Information Theor

    On the rate loss and construction of source codes for broadcast channels

    Get PDF
    In this paper, we first define and bound the rate loss of source codes for broadcast channels. Our broadcast channel model comprises one transmitter and two receivers; the transmitter is connected to each receiver by a private channel and to both receivers by a common channel. The transmitter sends a description of source (X, Y) through these channels, receiver 1 reconstructs X with distortion D1, and receiver 2 reconstructs Y with distortion D2. Suppose the rates of the common channel and private channels 1 and 2 are R0, R1, and R2, respectively. The work of Gray and Wyner gives a complete characterization of all achievable rate triples (R0,R1,R2) given any distortion pair (D1,D2). In this paper, we define the rate loss as the gap between the achievable region and the outer bound composed by the rate-distortion functions, i.e., R0+R1+R2 ≥ RX,Y (D1,D2), R0 + R1 ≥ RX(D1), and R0 + R2 ≥ RY (D2). We upper bound the rate loss for general sources by functions of distortions and upper bound the rate loss for Gaussian sources by constants, which implies that though the outer bound is generally not achievable, it may be quite close to the achievable region. This also bounds the gap between the achievable region and the inner bound proposed by Gray and Wyner and bounds the performance penalty associated with using separate decoders rather than joint decoders. We then construct such source codes using entropy-constrained dithered quantizers. The resulting implementation has low complexity and performance close to the theoretical optimum. In particular, the gap between its performance and the theoretical optimum can be bounded from above by constants for Gaussian sources
    corecore