240 research outputs found

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space application

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space applications

    Retrospective: Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

    Full text link
    Our ISCA 2014 paper provided the first scientific and detailed characterization, analysis, and real-system demonstration of what is now popularly known as the RowHammer phenomenon (or vulnerability) in modern commodity DRAM chips, which are used as main memory in almost all modern computing systems. It experimentally demonstrated that more than 80% of all DRAM modules we tested from the three major DRAM vendors were vulnerable to the RowHammer read disturbance phenomenon: one can predictably induce bitflips (i.e., data corruption) in real DRAM modules by repeatedly accessing a DRAM row and thus causing electrical disturbance to physically nearby rows. We showed that a simple unprivileged user-level program induced RowHammer bitflips in multiple real systems and suggested that a security attack can be built using this proof-of-concept to hijack control of the system or cause other harm. To solve the RowHammer problem, our paper examined seven different approaches (including a novel probabilistic approach that has very low cost), some of which influenced or were adopted in different industrial products. Many later works from various research communities examined RowHammer, building real security attacks, proposing new defenses, further analyzing the problem at various (e.g., device/circuit, architecture, and system) levels, and exploiting RowHammer for various purposes (e.g., to reverse-engineer DRAM chips). Industry has worked to mitigate the problem, changing both memory controllers and DRAM standards/chips. Two major DRAM vendors finally wrote papers on the topic in 2023, describing their current approaches to mitigate RowHammer. Research & development on RowHammer in both academia & industry continues to be very active and fascinating. This short retrospective provides a brief analysis of our ISCA 2014 paper and its impact.Comment: Selected to the 50th Anniversary of ISCA (ACM/IEEE International Symposium on Computer Architecture), Commemorative Issue, 202

    Investigating Power Outage Effects on Reliability of Solid-State Drives

    Full text link
    Solid-State Drives (SSDs) are recently employed in enterprise servers and high-end storage systems in order to enhance performance of storage subsystem. Although employing high speed SSDs in the storage subsystems can significantly improve system performance, it comes with significant reliability threat for write operations upon power failures. In this paper, we present a comprehensive analysis investigating the impact of workload dependent parameters on the reliability of SSDs under power failure for variety of SSDs (from top manufacturers). To this end, we first develop a platform to perform two important features required for study: a) a realistic fault injection into the SSD in the computing systems and b) data loss detection mechanism on the SSD upon power failure. In the proposed physical fault injection platform, SSDs experience a real discharge phase of Power Supply Unit (PSU) that occurs during power failure in data centers which was neglected in previous studies. The impact of workload dependent parameters such as workload Working Set Size (WSS), request size, request type, access pattern, and sequence of accesses on the failure of SSDs is carefully studied in the presence of realistic power failures. Experimental results over thousands number of fault injections show that data loss occurs even after completion of the request (up to 700ms) where the failure rate is influenced by the type, size, access pattern, and sequence of IO accesses while other parameters such as workload WSS has no impact on the failure of SSDs.Comment: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 201
    • …
    corecore