1,075,855 research outputs found
Effects of temporal variability of disturbance on the succession in marine fouling communities in northern-central Chile
We investigated the effects of temporal variability in a disturbance regime on fouling communities at two study sites in a northern-central Chilean bay. Fouling assemblages grown on artificial settlement substrata were disturbed by mechanical removal of biomass at different time intervals. Using one single disturbance frequency (10 disturbance events over 5 months) we applied 7 different temporal disturbance treatments: a constant disturbance regime (identical intervals between disturbance events), and 6 variable treatments where both variableness and sequences of intervals between disturbance events were manipulated. Two levels of temporal variableness (low and high, i.e. disturbance events were either dispersed or highly clumped in time) in the disturbance regime were applied by modifying the time intervals between subsequent disturbance events. To investigate the temporal coupling between disturbance events and other ecological processes (e.g. larval supply and recruitment intensity), three different sequences of disturbance intervals were nested in each of the two levels of temporal variableness. Species richness, evenness, total abundance, and structure of communities that experienced the various disturbance regimes were compared at the end of the experiment (15 days after the last disturbance event). Disturbance strongly influenced the community structure and led to a decrease in evenness and total abundance but not species richness. In undisturbed reference communities, the dominant competitor Pyura chilensis (Tunicata) occupied most available space while this species was suppressed in all disturbed treatments. Surprisingly, neither temporal variableness in the disturbance regime nor the sequence of intervals between disturbance events had an effect on community structure. Temporal variability in high disturbance regimes may be of minor importance for fouling communities, because they are dominated by opportunistic species that are adapted to rapidly exploit available space
Experimental test of entropic noise-disturbance uncertainty relations for spin-1/2 measurements
Information-theoretic definitions for noise and disturbance in quantum
measurements were given in Phys. Rev. Lett. 112, 050401 (2014) and a
state-independent noise-disturbance uncertainty relation was obtained. Here, we
derive a tight noise-disturbance uncertainty relation for complementary qubit
observables and carry out an experimental test. Successive projective
measurements on the neutron's spin-1/2system, together with a correction
procedure which reduces the disturbance, are performed. Our experimental
results saturate the tight noise-disturbance uncertainty relation for qubits
when an optimal correction procedure is applied.Comment: 5 pages, 5 figures plus Supplemental Material (5 pages, 4 figures
Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview
Disturbance Observer has been one of the most widely used robust control
tools since it was proposed in 1983. This paper introduces the origins of
Disturbance Observer and presents a survey of the major results on Disturbance
Observer-based robust control in the last thirty-five years. Furthermore, it
explains the analysis and synthesis techniques of Disturbance Observer-based
robust control for linear and nonlinear systems by using a unified framework.
In the last section, this paper presents concluding remarks on Disturbance
Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure
Forest Net Primary Production Resistance Across a Gradient of Moderate Disturbance
The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C uptake and loss. Moderate disturbances that kill or defoliate only a subset of canopy trees such as insect defoliation, drought, and age-related senescence are increasing in extent and frequency; yet, little is known about the effect of moderate disturbance on forest production and the mechanisms sustaining or supporting the recovery of the C cycle across a range of moderate disturbance severities. We used a broad plot-scale gradient of upper canopy tree mortality within a large manipulation of forest disturbance to: 1) quantify how aboveground wood net primary production (ANPPw) responds to a range of moderate disturbance severities and; 2) identify the primary mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw was highly resistant to moderate disturbance, with production levels sustained following the senescence of 9 to \u3e 60 % of the upper canopy tree basal area. As upper canopy gap fraction increased with rising disturbance severity, greater light availability to the subcanopy enhanced leaf-level C uptake and the growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses. As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased at high levels of disturbance severity and leaf area loss. These findings provide a mechanistic explanation for sustained ANPPw across the disturbance gradient, in which the physiological and growth enhancement of undisturbed vegetation was proportional to the level of disturbance severity. Our results have important ecological and management implications, showing that moderate disturbances may minimally alter ecosystem functions such as C storage
- …
