99 research outputs found

    Rectangularity and duality of distributionally robust Markov Decision Processes

    Full text link
    The main goal of this paper is to discuss several approaches to formulation of distributionally robust counterparts of Markov Decision Processes, where the transition kernels are not specified exactly but rather are assumed to be elements of the corresponding ambiguity sets. The intent is to clarify some connections between the game and static formulations of distributionally robust MDPs, and delineate the role of rectangularity associated with ambiguity sets in determining these connections

    Distributionally Robust Markov Decision Processes and their Connection to Risk Measures

    Full text link
    We consider robust Markov Decision Processes with Borel state and action spaces, unbounded cost and finite time horizon. Our formulation leads to a Stackelberg game against nature. Under integrability, continuity and compactness assumptions we derive a robust cost iteration for a fixed policy of the decision maker and a value iteration for the robust optimization problem. Moreover, we show the existence of deterministic optimal policies for both players. This is in contrast to classical zero-sum games. In case the state space is the real line we show under some convexity assumptions that the interchange of supremum and infimum is possible with the help of Sion's minimax Theorem. Further, we consider the problem with special ambiguity sets. In particular we are able to derive some cases where the robust optimization problem coincides with the minimization of a coherent risk measure. In the final section we discuss two applications: A robust LQ problem and a robust problem for managing regenerative energy

    Distributionally Robust Optimization for Sequential Decision Making

    Full text link
    The distributionally robust Markov Decision Process (MDP) approach asks for a distributionally robust policy that achieves the maximal expected total reward under the most adversarial distribution of uncertain parameters. In this paper, we study distributionally robust MDPs where ambiguity sets for the uncertain parameters are of a format that can easily incorporate in its description the uncertainty's generalized moment as well as statistical distance information. In this way, we generalize existing works on distributionally robust MDP with generalized-moment-based and statistical-distance-based ambiguity sets to incorporate information from the former class such as moments and dispersions to the latter class that critically depends on empirical observations of the uncertain parameters. We show that, under this format of ambiguity sets, the resulting distributionally robust MDP remains tractable under mild technical conditions. To be more specific, a distributionally robust policy can be constructed by solving a sequence of one-stage convex optimization subproblems

    Distributionally Robust Model-based Reinforcement Learning with Large State Spaces

    Full text link
    Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment. To overcome these issues, we study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets. We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics, leveraging access to a generative model (i.e., simulator). We further demonstrate the statistical sample complexity of the proposed method for different uncertainty sets. These complexity bounds are independent of the number of states and extend beyond linear dynamics, ensuring the effectiveness of our approach in identifying near-optimal distributionally-robust policies. The proposed method can be further combined with other model-free distributionally robust reinforcement learning methods to obtain a near-optimal robust policy. Experimental results demonstrate the robustness of our algorithm to distributional shifts and its superior performance in terms of the number of samples needed

    On the Foundation of Distributionally Robust Reinforcement Learning

    Full text link
    Motivated by the need for a robust policy in the face of environment shifts between training and the deployment, we contribute to the theoretical foundation of distributionally robust reinforcement learning (DRRL). This is accomplished through a comprehensive modeling framework centered around distributionally robust Markov decision processes (DRMDPs). This framework obliges the decision maker to choose an optimal policy under the worst-case distributional shift orchestrated by an adversary. By unifying and extending existing formulations, we rigorously construct DRMDPs that embraces various modeling attributes for both the decision maker and the adversary. These attributes include adaptability granularity, exploring history-dependent, Markov, and Markov time-homogeneous decision maker and adversary dynamics. Additionally, we delve into the flexibility of shifts induced by the adversary, examining SA and S-rectangularity. Within this DRMDP framework, we investigate conditions for the existence or absence of the dynamic programming principle (DPP). From an algorithmic standpoint, the existence of DPP holds significant implications, as the vast majority of existing data and computationally efficiency RL algorithms are reliant on the DPP. To study its existence, we comprehensively examine combinations of controller and adversary attributes, providing streamlined proofs grounded in a unified methodology. We also offer counterexamples for settings in which a DPP with full generality is absent

    Distributionally Robust Off-Dynamics Reinforcement Learning: Provable Efficiency with Linear Function Approximation

    Full text link
    We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a dd-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments.Comment: 30 pages, 4 figures. To appear in the proceedings of the 27th International Conference on Artificial Intelligence and Statistics (AISTATS

    On the Convergence of Modified Policy Iteration in Risk Sensitive Exponential Cost Markov Decision Processes

    Full text link
    Modified policy iteration (MPI) is a dynamic programming algorithm that combines elements of policy iteration and value iteration. The convergence of MPI has been well studied in the context of discounted and average-cost MDPs. In this work, we consider the exponential cost risk-sensitive MDP formulation, which is known to provide some robustness to model parameters. Although policy iteration and value iteration have been well studied in the context of risk sensitive MDPs, MPI is unexplored. We provide the first proof that MPI also converges for the risk-sensitive problem in the case of finite state and action spaces. Since the exponential cost formulation deals with the multiplicative Bellman equation, our main contribution is a convergence proof which is quite different than existing results for discounted and risk-neutral average-cost problems as well as risk sensitive value and policy iteration approaches. We conclude our analysis with simulation results, assessing MPI's performance relative to alternative dynamic programming methods like value iteration and policy iteration across diverse problem parameters. Our findings highlight risk-sensitive MPI's enhanced computational efficiency compared to both value and policy iteration techniques.Comment: 25 pages, 3 figures, Under review at Operations Researc
    corecore