1,066 research outputs found

    A Unified Theory of Robust and Distributionally Robust Optimization via the Primal-Worst-Equals-Dual-Best Principle

    Full text link
    Robust and distributionally robust optimization are modeling paradigms for decision-making under uncertainty where the uncertain parameters are only known to reside in an uncertainty set or are governed by any probability distribution from within an ambiguity set, respectively, and a decision is sought that minimizes a cost function under the most adverse outcome of the uncertainty. In this paper, we develop a rigorous and general theory of robust and distributionally robust nonlinear optimization using the language of convex analysis. Our framework is based on a generalized `primal-worst-equals-dual-best' principle that establishes strong duality between a semi-infinite primal worst and a non-convex dual best formulation, both of which admit finite convex reformulations. This principle offers an alternative formulation for robust optimization problems that obviates the need to mobilize the machinery of abstract semi-infinite duality theory to prove strong duality in distributionally robust optimization. We illustrate the modeling power of our approach through convex reformulations for distributionally robust optimization problems whose ambiguity sets are defined through general optimal transport distances, which generalize earlier results for Wasserstein ambiguity sets.Comment: Previous title: Mathematical Foundations of Robust and Distributionally Robust Optimizatio

    Distributionally Robust Games with Risk-averse Players

    Full text link
    We present a new model of incomplete information games without private information in which the players use a distributionally robust optimization approach to cope with the payoff uncertainty. With some specific restrictions, we show that our "Distributionally Robust Game" constitutes a true generalization of three popular finite games. These are the Complete Information Games, Bayesian Games and Robust Games. Subsequently, we prove that the set of equilibria of an arbitrary distributionally robust game with specified ambiguity set can be computed as the component-wise projection of the solution set of a multi-linear system of equations and inequalities. For special cases of such games we show equivalence to complete information finite games (Nash Games) with the same number of players and same action spaces. Thus, when our game falls within these special cases one can simply solve the corresponding Nash Game. Finally, we demonstrate the applicability of our new model of games and highlight its importance.Comment: 11 pages, 3 figures, Proceedings of 5th the International Conference on Operations Research and Enterprise Systems ({ICORES} 2016), Rome, Italy, February 23-25, 201
    • …
    corecore