5 research outputs found

    Covariance Based Spectrum Sensing with Studentized Extreme Eigenvalue

    Get PDF
    The eigenvalue based detection is a low-cost spectrum sensing method that detects the presence of primary user signal at a desired frequency. In this study, the largest eigenvalue distribution used in eigenvalue based detection methods is expressed using a new centering and scaling coefficients adjustment. Thus, the detection probability (Pd) and false detection probability (Pfa) equations for the maximum-minimum eigenvalue (MME), maximum eigenvalue to trace (MET) and maximum eigenvalue-geometric mean (ME-GM) have been obtained again. Weibull fading channels are the best model for wireless communication. For this reason, the studies were simulated in Weibull fading channels and analysed in detail with receiver operating characteristic curves (ROC). The results were compared with traditional methods and found to be more accurate

    Numerical Computation of Wishart Eigenvalue Distributions for Multistatic Radar Detection

    Get PDF
    abstract: Eigenvalues of the Gram matrix formed from received data frequently appear in sufficient detection statistics for multi-channel detection with Generalized Likelihood Ratio (GLRT) and Bayesian tests. In a frequently presented model for passive radar, in which the null hypothesis is that the channels are independent and contain only complex white Gaussian noise and the alternative hypothesis is that the channels contain a common rank-one signal in the mean, the GLRT statistic is the largest eigenvalue λ1\lambda_1 of the Gram matrix formed from data. This Gram matrix has a Wishart distribution. Although exact expressions for the distribution of λ1\lambda_1 are known under both hypotheses, numerically calculating values of these distribution functions presents difficulties in cases where the dimension of the data vectors is large. This dissertation presents tractable methods for computing the distribution of λ1\lambda_1 under both the null and alternative hypotheses through a technique of expanding known expressions for the distribution of λ1\lambda_1 as inner products of orthogonal polynomials. These newly presented expressions for the distribution allow for computation of detection thresholds and receiver operating characteristic curves to arbitrary precision in floating point arithmetic. This represents a significant advancement over the state of the art in a problem that could previously only be addressed by Monte Carlo methods.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Advanced RFI detection, RFI excision, and spectrum sensing : algorithms and performance analyses

    Get PDF
    Because of intentional and unintentional man-made interference, radio frequency interference (RFI) is causing performance loss in various radio frequency operating systems such as microwave radiometry, radio astronomy, satellite communications, ultra-wideband communications, radar, and cognitive radio. To overcome the impact of RFI, a robust RFI detection coupled with an efficient RFI excision are, thus, needed. Amongst their limitations, the existing techniques tend to be computationally complex and render inefficient RFI excision. On the other hand, the state-of-the-art on cognitive radio (CR) encompasses numerous spectrum sensing techniques. However, most of the existing techniques either rely on the availability of the channel state information (CSI) or the primary signal characteristics. Motivated by the highlighted limitations, this Ph.D. dissertation presents research investigations and results grouped into three themes: advanced RFI detection, advanced RFI excision, and advanced spectrum sensing. Regarding advanced RFI detection, this dissertation presents five RFI detectors: a power detector (PD), an energy detector (ED), an eigenvalue detector (EvD), a matrix-based detector, and a tensor-based detector. First, a computationally simple PD is investigated to detect a brodband RFI. By assuming Nakagami-m fading channels, exact closed-form expressions for the probabilities of RFI detection and of false alarm are derived and validated via simulations. Simulations also demonstrate that PD outperforms kurtosis detector (KD). Second, an ED is investigated for RFI detection in wireless communication systems. Its average probability of RFI detection is studied and approximated, and asymptotic closed-form expressions are derived. Besides, an exact closed-form expression for its average probability of false alarm is derived. Monte-Carlo simulations validate the derived analytical expressions and corroborate that the investigated ED outperforms KD and a generalized likelihood ratio test (GLRT) detector. The performance of ED is also assessed using real-world RFI contaminated data. Third, a blind EvD is proposed for single-input multiple-output (SIMO) systems that may suffer from RFI. To characterize the performance of EvD, performance closed-form expressions valid for infinitely huge samples are derived and validated through simulations. Simulations also corroborate that EvD manifests, even under sample starved settings, a comparable detection performance with a GLRT detector fed with the knowledge of the signal of interest (SOI) channel and a matched subspace detector fed with the SOI and RFI channels. At last, for a robust detection of RFI received through a multi-path fading channel, this dissertation presents matrix-based and tensor-based multi-antenna RFI detectors while introducing a tensor-based hypothesis testing framework. To characterize the performance of these detectors, performance analyses have been pursued. Simulations assess the performance of the proposed detectors and validate the derived asymptotic characterizations. Concerning advanced RFI excision, this dissertation introduces a multi-linear algebra framework to the multi-interferer RFI (MI-RFI) excision research by proposing a multi-linear subspace estimation and projection (MLSEP) algorithm for SIMO systems. Having employed smoothed observation windows, a smoothed MLSEP (s-MLSEP) algorithm is also proposed. MLSEP and s-MLSEP require the knowledge of the number of interferers and their respective channel order. Accordingly, a novel smoothed matrix-based joint number of interferers and channel order enumerator is proposed. Performance analyses corroborate that both MLSEP and s-MLSEP can excise all interferers when the perturbations get infinitesimally small. For such perturbations, the analyses also attest that s-MLSEP exhibits a faster convergence to a zero excision error than MLSEP which, in turn, converges faster than a subspace projection algorithm. Despite its slight complexity, simulations and performance assessment on real-world data demonstrate that MLSEP outperforms projection-based RFI excision algorithms. Simulations also corroborate that s-MLSEP outperforms MLSEP as the smoothing factor gets smaller. With regard to advanced spectrum sensing, having been inspired by an F–test detector with a simple analytical false alarm threshold expression considered an alternative to the existing blind detectors, this dissertation presents and evaluates simple F–test based spectrum sensing techniques that do not require the knowledge of CSI for multi-antenna CRs. Exact and asymptotic analytical performance closed-form expressions are derived for the presented detectors. Simulations assess the performance of the presented detectors and validate the derived expressions. For an additive noise exhibiting the same variance across multiple-antenna frontends, simulations also corroborate that the presented detectors are constant false alarm rate detectors which are also robust against noise uncertainty
    corecore