755,411 research outputs found

    Distribution of Mutual Information

    Full text link
    The mutual information of two random variables i and j with joint probabilities t_ij is commonly used in learning Bayesian nets as well as in many other fields. The chances t_ij are usually estimated by the empirical sampling frequency n_ij/n leading to a point estimate I(n_ij/n) for the mutual information. To answer questions like "is I(n_ij/n) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?" one has to go beyond the point estimate. In the Bayesian framework one can answer these questions by utilizing a (second order) prior distribution p(t) comprising prior information about t. From the prior p(t) one can compute the posterior p(t|n), from which the distribution p(I|n) of the mutual information can be calculated. We derive reliable and quickly computable approximations for p(I|n). We concentrate on the mean, variance, skewness, and kurtosis, and non-informative priors. For the mean we also give an exact expression. Numerical issues and the range of validity are discussed.Comment: 8 page

    Distribution of Mutual Information from Complete and Incomplete Data

    Full text link
    Mutual information is widely used, in a descriptive way, to measure the stochastic dependence of categorical random variables. In order to address questions such as the reliability of the descriptive value, one must consider sample-to-population inferential approaches. This paper deals with the posterior distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean, and analytical approximations for the variance, skewness and kurtosis are derived. These approximations have a guaranteed accuracy level of the order O(1/n^3), where n is the sample size. Leading order approximations for the mean and the variance are derived in the case of incomplete samples. The derived analytical expressions allow the distribution of mutual information to be approximated reliably and quickly. In fact, the derived expressions can be computed with the same order of complexity needed for descriptive mutual information. This makes the distribution of mutual information become a concrete alternative to descriptive mutual information in many applications which would benefit from moving to the inductive side. Some of these prospective applications are discussed, and one of them, namely feature selection, is shown to perform significantly better when inductive mutual information is used.Comment: 26 pages, LaTeX, 5 figures, 4 table

    Living at the Edge: A Large Deviations Approach to the Outage MIMO Capacity

    Full text link
    Using a large deviations approach we calculate the probability distribution of the mutual information of MIMO channels in the limit of large antenna numbers. In contrast to previous methods that only focused at the distribution close to its mean (thus obtaining an asymptotically Gaussian distribution), we calculate the full distribution, including its tails which strongly deviate from the Gaussian behavior near the mean. The resulting distribution interpolates seamlessly between the Gaussian approximation for rates RR close to the ergodic value of the mutual information and the approach of Zheng and Tse for large signal to noise ratios ρ\rho. This calculation provides us with a tool to obtain outage probabilities analytically at any point in the (R,ρ,N)(R, \rho, N) parameter space, as long as the number of antennas NN is not too small. In addition, this method also yields the probability distribution of eigenvalues constrained in the subspace where the mutual information per antenna is fixed to RR for a given ρ\rho. Quite remarkably, this eigenvalue density is of the form of the Marcenko-Pastur distribution with square-root singularities, and it depends on the values of RR and ρ\rho.Comment: Accepted for publication, IEEE Transactions on Information Theory (2010). Part of this work appears in the Proc. IEEE Information Theory Workshop, June 2009, Volos, Greec

    Information In The Non-Stationary Case

    Full text link
    Information estimates such as the ``direct method'' of Strong et al. (1998) sidestep the difficult problem of estimating the joint distribution of response and stimulus by instead estimating the difference between the marginal and conditional entropies of the response. While this is an effective estimation strategy, it tempts the practitioner to ignore the role of the stimulus and the meaning of mutual information. We show here that, as the number of trials increases indefinitely, the direct (or ``plug-in'') estimate of marginal entropy converges (with probability 1) to the entropy of the time-averaged conditional distribution of the response, and the direct estimate of the conditional entropy converges to the time-averaged entropy of the conditional distribution of the response. Under joint stationarity and ergodicity of the response and stimulus, the difference of these quantities converges to the mutual information. When the stimulus is deterministic or non-stationary the direct estimate of information no longer estimates mutual information, which is no longer meaningful, but it remains a measure of variability of the response distribution across time

    Robust Feature Selection by Mutual Information Distributions

    Full text link
    Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.Comment: 8 two-column page
    corecore