1,673,970 research outputs found

    Sri Lanka Malaria Maps

    Get PDF
    BACKGROUND: Despite a relatively good national case reporting system in Sri Lanka, detailed maps of malaria distribution have not been publicly available. METHODS: In this study, monthly records over the period 1995 – 2000 of microscopically confirmed malaria parasite positive blood film readings, at sub-district spatial resolution, were used to produce maps of malaria distribution across the island. Also, annual malaria trends at district resolution were displayed for the period 1995 – 2002. RESULTS: The maps show that Plasmodium vivax malaria incidence has a marked variation in distribution over the island. The incidence of Plasmodium falciparum malaria follows a similar spatial pattern but is generally much lower than that of P. vivax. In the north, malaria shows one seasonal peak in the beginning of the year, whereas towards the south a second peak around June is more pronounced. CONCLUSION: This paper provides the first publicly available maps of both P. vivax and P. falciparum malaria incidence distribution on the island of Sri Lanka at sub-district resolution, which may be useful to health professionals, travellers and travel medicine professionals in their assessment of malaria risk in Sri Lanka. As incidence of malaria changes over time, regular updates of these maps are necessary

    On the Effects of Projection on Morphology

    Full text link
    We study the effects of projection of three-dimensional (3D) data onto the plane of the sky by means of numerical simulations of turbulence in the interstellar medium including the magnetic field, parameterized cooling and diffuse and stellar heating, self-gravity and rotation. We compare the physical-space density and velocity distributions with their representation in position-position-velocity (PPV) space (``channel maps''), noting that the latter can be interpreted in two ways: either as maps of the column density's spatial distribution (at a given line-of-sight (LOS) velocity), or as maps of the spatial distribution of a given value of the LOS velocity (weighted by density). This ambivalence appears related to the fact that the spatial and PPV representations of the data give significantly different views. First, the morphology in the channel maps more closely resembles that of the spatial distribution of the LOS velocity component than that of the density field, as measured by pixel-to-pixel correlations between images. Second, the channel maps contain more small-scale structure than 3D slices of the density and velocity fields, a fact evident both in subjective appearance and in the power spectra of the images. This effect may be due to a pseudo-random sampling (along the LOS) of the gas contributing to the structure in a channel map: the positions sampled along the LOS (chosen by their LOS velocity) may vary significantly from one position in the channel map to the next.Comment: 6 figures. To appear in the March 20th volume in Ap

    X-ray measured metallicities of the intra-cluster medium: a good measure for the metal mass?

    Full text link
    Aims. We investigate whether X-ray observations map heavy elements in the Intra-Cluster Medium (ICM) well and whether the X-ray observations yield good estimates for the metal mass, with respect to predictions on transport mech- anisms of heavy elements from galaxies into the ICM. We further test the accuracy of simulated metallicity maps. Methods. We extract synthetic X-ray spectra from N-body/hydrodynamic simulations including metal enrichment pro- cesses, which we then analyse with the same methods as are applied to observations. By changing the metal distribution in the simulated galaxy clusters, we investigate the dependence of the overall metallicity as a function of the metal distribution. In addition we investigate the difference of X-ray weighted metal maps produced by simulations and metal maps extracted from artifcial X-ray spectra, which we calculate with SPEX2.0 and analyse with XSPEC12.0. Results. The overall metallicity depends strongly on the distribution of metals within the galaxy cluster. The more inhomogeneously the metals are distributed within the cluster, the less accurate is the metallicity as a measure for the true metal mass. The true metal mass is generally underestimated by X-ray observations. The difference between the X-ray weighted metal maps and the metal maps from synthetic X-ray spectra is on average less than 7% in the temperature regime above T > 3E7 K, i.e. X-ray weighted metal maps can be well used for comparison with observed metal maps. Extracting the metal mass in the central parts (r < 500 kpc) of galaxy clusters with X-ray observations results in metal mass underestimates up to a factor of three.Comment: 7 pages, 9 figures, accepted for publication in A&

    The Milky Way's Stellar Disk

    Get PDF
    A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanisms of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up from `mono-abundance populations' (MAPs), both for dynamical modeling and for constraining the Milky Way's evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and lay out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way's dark matter distribution and formation history.Comment: Astron. Astrophys. Rev., in pres

    Invariance principles for random bipartite planar maps

    Full text link
    Random planar maps are considered in the physics literature as the discrete counterpart of random surfaces. It is conjectured that properly rescaled random planar maps, when conditioned to have a large number of faces, should converge to a limiting surface whose law does not depend, up to scaling factors, on details of the class of maps that are sampled. Previous works on the topic, starting with Chassaing and Schaeffer, have shown that the radius of a random quadrangulation with nn faces, that is, the maximal graph distance on such a quadrangulation to a fixed reference point, converges in distribution once rescaled by n1/4n^{1/4} to the diameter of the Brownian snake, up to a scaling constant. Using a bijection due to Bouttier, Di Francesco and Guitter between bipartite planar maps and a family of labeled trees, we show the corresponding invariance principle for a class of random maps that follow a Boltzmann distribution putting weight qkq_k on faces of degree 2k2k: the radius of such maps, conditioned to have nn faces (or nn vertices) and under a criticality assumption, converges in distribution once rescaled by n1/4n^{1/4} to a scaled version of the diameter of the Brownian snake. Convergence results for the so-called profile of maps are also provided. The convergence of rescaled bipartite maps to the Brownian map, in the sense introduced by Marckert and Mokkadem, is also shown. The proofs of these results rely on a new invariance principle for two-type spatial Galton--Watson trees.Comment: Published in at http://dx.doi.org/10.1214/009117906000000908 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    PrAGMATiC: a Probabilistic and Generative Model of Areas Tiling the Cortex

    Full text link
    Much of the human cortex seems to be organized into topographic cortical maps. Yet few quantitative methods exist for characterizing these maps. To address this issue we developed a modeling framework that can reveal group-level cortical maps based on neuroimaging data. PrAGMATiC, a probabilistic and generative model of areas tiling the cortex, is a hierarchical Bayesian generative model of cortical maps. This model assumes that the cortical map in each individual subject is a sample from a single underlying probability distribution. Learning the parameters of this distribution reveals the properties of a cortical map that are common across a group of subjects while avoiding the potentially lossy step of co-registering each subject into a group anatomical space. In this report we give a mathematical description of PrAGMATiC, describe approximations that make it practical to use, show preliminary results from its application to a real dataset, and describe a number of possible future extensions
    corecore