2,292,160 research outputs found
Transmuted Lindley-Geometric Distribution and its applications
A functional composition of the cumulative distribution function of one
probability distribution with the inverse cumulative distribution function of
another is called the transmutation map. In this article, we will use the
quadratic rank transmutation map (QRTM) in order to generate a flexible family
of probability distributions taking Lindley geometric distribution as the base
value distribution by introducing a new parameter that would offer more
distributional flexibility. It will be shown that the analytical results are
applicable to model real world data.Comment: 20 pages, 6 figures. arXiv admin note: substantial text overlap with
arXiv:1309.326
Gibbs flow for approximate transport with applications to Bayesian computation
Let and be two distributions on the Borel space
. Any measurable function
such that if
is called a transport map from to . For any
and , if one could obtain an analytical expression for a
transport map from to , then this could be straightforwardly
applied to sample from any distribution. One would map draws from an
easy-to-sample distribution to the target distribution
using this transport map. Although it is usually impossible to obtain an
explicit transport map for complex target distributions, we show here how to
build a tractable approximation of a novel transport map. This is achieved by
moving samples from using an ordinary differential equation with a
velocity field that depends on the full conditional distributions of the
target. Even when this ordinary differential equation is time-discretized and
the full conditional distributions are numerically approximated, the resulting
distribution of mapped samples can be efficiently evaluated and used as a
proposal within sequential Monte Carlo samplers. We demonstrate significant
gains over state-of-the-art sequential Monte Carlo samplers at a fixed
computational complexity on a variety of applications.Comment: Significantly revised with new methodology and numerical example
Quasi Markovian behavior in mixing maps
We consider the time dependent probability distribution of a coarse grained
observable Y whose evolution is governed by a discrete time map. If the map is
mixing, the time dependent one-step transition probabilities converge in the
long time limit to yield an ergodic stochastic matrix. The stationary
distribution of this matrix is identical to the asymptotic distribution of Y
under the exact dynamics. The nth time iterate of the baker map is explicitly
computed and used to compare the time evolution of the occupation probabilities
with those of the approximating Markov chain. The convergence is found to be at
least exponentially fast for all rectangular partitions with Lebesgue measure.
In particular, uniform rectangles form a Markov partition for which we find
exact agreement.Comment: 16 pages, 1 figure, uses elsart.sty, to be published in Physica D
Special Issue on Predictability: Quantifying Uncertainty in Models of Complex
Phenomen
- …
