3,193,010 research outputs found
Reliability analysis of distribution network
The knowledge of the reliability of distribution networks and systems is important
consideration in the system planning and operations for development and
improvements of power distribution systems. To achieve the target as minimum
interruptions as possible to customers, utilities must strive to improve the reliability
but at the same time reduce cost. It is a known fact that most of customer
interruptions are caused by the failure in distribution system. However, valid data are
not easy to collect and the reliability performance statistic not easy to obtain. There is
always uncertainty associated with the distribution network reliability. For evaluation
and analysis of reliability, it is necessary to have data on the number and range of the
examined piece of equipment. It’s important to have database for failure rates, repair
time and unavailability for each component in distribution network. These studies
present the analysis of distribution networks and systems by using analytical methods
in SESB’s distribution substations and network systems. These studies use analytical
methods to determine the reliability indices and effect of distribution substation
configuration and network to the reliability indices performance. Then the result
obtained will be compare with the actual data from SESB to determine the area of
improvement required for mutual benefit and also for improvement in the future
studies
Hydrogen bond network topology in liquid water and methanol: a graph theory approach
Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdős–Rényi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or Erdős–Rényi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in Erdős–Rényi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist
Active local distribution network management for embedded generation
Traditionally, distribution networks have been operated as passive networks with uni-directional power flows. With the connection of increasing amounts of distributed generation, these networks are becoming active with power flowing in two directions, hence requiring more intelligent forms of management. The report into issues for access to electricity networks published by the Ofgem/DTI Embedded Generation Working Group in January 2001 called for new work in the area of active distribution network management. The report suggested an evolution from the present passive network control philosophy to fully active network control methods. In line with these recommendations Econnect is developing a new type of distribution network controller, called GenAVC. GenAVC is a controller for electricity distribution networks that aims to increase the amount of energy that can be exported onto the distribution networks by generating plants. The UK is leading the world in electricity de-regulation and one aspect of this is the increasing demand for the connection of distributed generation. Active distribution network management is seen to be essential for networks to accommodate the levels of distributed generation that are predicted for 2010. The work being undertaken as part of this project is therefore at the forefront of international network management technology
Distribution market as a ramping aggregator for grid flexibility support
The growing proliferation of microgrids and distributed energy resources in
distribution networks has resulted in the development of Distribution Market
Operator (DMO). This new entity will facilitate the management of the
distributed resources and their interactions with upstream network and the
wholesale market. At the same time, DMOs can tap into the flexibility potential
of these distributed resources to address many of the challenges that system
operators are facing. This paper investigates this opportunity and develops a
distribution market scheduling model based on upstream network ramping
flexibility requirements. That is, the distribution network will play the role
of a flexibility resource in the system, with a relatively large size and
potential, to help bulk system operators to address emerging ramping concerns.
Numerical simulations demonstrate the effectiveness of the proposed model on
when tested on a distribution system with several microgrids.Comment: IEEE PES Transmission and Distribution Conference and Exposition
(T&D), Denver, CO, 16-19 Apr. 201
- …
