3,985 research outputs found

    Task-Driven Estimation and Control via Information Bottlenecks

    Full text link
    Our goal is to develop a principled and general algorithmic framework for task-driven estimation and control for robotic systems. State-of-the-art approaches for controlling robotic systems typically rely heavily on accurately estimating the full state of the robot (e.g., a running robot might estimate joint angles and velocities, torso state, and position relative to a goal). However, full state representations are often excessively rich for the specific task at hand and can lead to significant computational inefficiency and brittleness to errors in state estimation. In contrast, we present an approach that eschews such rich representations and seeks to create task-driven representations. The key technical insight is to leverage the theory of information bottlenecks}to formalize the notion of a "task-driven representation" in terms of information theoretic quantities that measure the minimality of a representation. We propose novel iterative algorithms for automatically synthesizing (offline) a task-driven representation (given in terms of a set of task-relevant variables (TRVs)) and a performant control policy that is a function of the TRVs. We present online algorithms for estimating the TRVs in order to apply the control policy. We demonstrate that our approach results in significant robustness to unmodeled measurement uncertainty both theoretically and via thorough simulation experiments including a spring-loaded inverted pendulum running to a goal location.Comment: 9 pages, 4 figures, abridged version accepted to ICRA2019; Incorporates changes in final conference submissio

    Bayesian Nonparametric Adaptive Control using Gaussian Processes

    Get PDF
    This technical report is a preprint of an article submitted to a journal.Most current Model Reference Adaptive Control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element are Radial Basis Function Networks (RBFNs), with RBF centers pre-allocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become non-effective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semi-global in nature. This paper investigates a Gaussian Process (GP) based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.This research was supported in part by ONR MURI Grant N000141110688 and NSF grant ECS #0846750
    • …
    corecore