13,084 research outputs found
CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms
How to optimally dispatch orders to vehicles and how to tradeoff between
immediate and future returns are fundamental questions for a typical
ride-hailing platform. We model ride-hailing as a large-scale parallel ranking
problem and study the joint decision-making task of order dispatching and fleet
management in online ride-hailing platforms. This task brings unique challenges
in the following four aspects. First, to facilitate a huge number of vehicles
to act and learn efficiently and robustly, we treat each region cell as an
agent and build a multi-agent reinforcement learning framework. Second, to
coordinate the agents from different regions to achieve long-term benefits, we
leverage the geographical hierarchy of the region grids to perform hierarchical
reinforcement learning. Third, to deal with the heterogeneous and variant
action space for joint order dispatching and fleet management, we design the
action as the ranking weight vector to rank and select the specific order or
the fleet management destination in a unified formulation. Fourth, to achieve
the multi-scale ride-hailing platform, we conduct the decision-making process
in a hierarchical way where a multi-head attention mechanism is utilized to
incorporate the impacts of neighbor agents and capture the key agent in each
scale. The whole novel framework is named as CoRide. Extensive experiments
based on multiple cities real-world data as well as analytic synthetic data
demonstrate that CoRide provides superior performance in terms of platform
revenue and user experience in the task of city-wide hybrid order dispatching
and fleet management over strong baselines.Comment: CIKM 201
Fast Heuristics for Delay Management with Passenger Rerouting
Delay management models determine which connections should be maintained in case of a delayed feeder train. Recently, delay management models are developed that take into account that passengers will adjust their routes when they miss a connection. However, for large-scale real-world instances, these extended models become too large to be solved with standard integer programming techniques. We therefore develop several heuristics to tackle these larger instances. The dispatching rules that are used in practice are our first heuristic. Our second heuristic applies the classical delay management model without passenger rerouting. Finally, the third heuristic updates the parameters of the classical model iteratively. We compare the quality of these heuristic solution methods on real-life instances from Netherlands Railways. In this experimental study, we show that our iterative heuristic can solve large real-world instances within a short computation time. Furthermore, the solutions obtained by this iterative heuristic are of good quality.public transportation;daily management;passenger rerouting;railway operations
A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers
We propose a ridesharing strategy with integrated transit in which a private
on-demand mobility service operator may drop off a passenger directly
door-to-door, commit to dropping them at a transit station or picking up from a
transit station, or to both pickup and drop off at two different stations with
different vehicles. We study the effectiveness of online solution algorithms
for this proposed strategy. Queueing-theoretic vehicle dispatch and idle
vehicle relocation algorithms are customized for the problem. Several
experiments are conducted first with a synthetic instance to design and test
the effectiveness of this integrated solution method, the influence of
different model parameters, and measure the benefit of such cooperation.
Results suggest that rideshare vehicle travel time can drop by 40-60%
consistently while passenger journey times can be reduced by 50-60% when demand
is high. A case study of Long Island commuters to New York City (NYC) suggests
having the proposed operating strategy can substantially cut user journey times
and operating costs by up to 54% and 60% each for a range of 10-30 taxis
initiated per zone. This result shows that there are settings where such
service is highly warranted
A survey of simulation techniques in commerce and defence
Despite the developments in Modelling and Simulation (M&S) tools and techniques over the past years, there has been a gap in the M&S research and practice in healthcare on developing a toolkit to assist the modellers and simulation practitioners with selecting an appropriate set of techniques. This study is a preliminary step towards this goal. This paper presents some results from a systematic literature survey on applications of M&S in the commerce and defence domains that could inspire some improvements in the healthcare. Interim results show that in the commercial sector Discrete-Event Simulation (DES) has been the most widely used technique with System Dynamics (SD) in second place. However in the defence sector, SD has gained relatively more attention. SD has been found quite useful for qualitative and soft factors analysis. From both the surveys it becomes clear that there is a growing trend towards using hybrid M&S approaches
Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms
This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology.This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology
The Maraca: a tool for minimizing resource conflicts in a non-periodic railway timetable
While mathematical optimization and operations research receive growing attention in the railway sector, computerized timetabling tools that actually make significant use of optimization remain relatively rare. SICS has developed a prototype tool for non-periodic timetabling that minimizes resource conflicts, enabling the user to focus on the strategic decisions. The prototype is called the Maraca and has been used and evaluated during the railway timetabling construction phase at the Swedish Transport Administration between April and September 2010
- …
