767 research outputs found

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Exploiting Regional Differences: A Spatially Adaptive Random Access

    Full text link
    In this paper, we discuss the potential for improvement of the simple random access scheme by utilizing local information such as the received signal-to-interference-plus-noise-ratio (SINR). We propose a spatially adaptive random access (SARA) scheme in which the transmitters in the network utilize different transmit probabilities depending on the local situation. In our proposed scheme, the transmit probability is adaptively updated by the ratio of the received SINR and the target SINR. We investigate the performance of the spatially adaptive random access scheme. For the comparison, we derive an optimal transmit probability of ALOHA random access scheme in which all transmitters use the same transmit probability. We illustrate the performance of the spatially adaptive random access scheme through simulations. We show that the performance of the proposed scheme surpasses that of the optimal ALOHA random access scheme and is comparable with the CSMA/CA scheme.Comment: 10 pages, 10 figure
    corecore