19,749 research outputs found

    Deep Reinforcement Learning for Swarm Systems

    Full text link
    Recently, deep reinforcement learning (RL) methods have been applied successfully to multi-agent scenarios. Typically, these methods rely on a concatenation of agent states to represent the information content required for decentralized decision making. However, concatenation scales poorly to swarm systems with a large number of homogeneous agents as it does not exploit the fundamental properties inherent to these systems: (i) the agents in the swarm are interchangeable and (ii) the exact number of agents in the swarm is irrelevant. Therefore, we propose a new state representation for deep multi-agent RL based on mean embeddings of distributions. We treat the agents as samples of a distribution and use the empirical mean embedding as input for a decentralized policy. We define different feature spaces of the mean embedding using histograms, radial basis functions and a neural network learned end-to-end. We evaluate the representation on two well known problems from the swarm literature (rendezvous and pursuit evasion), in a globally and locally observable setup. For the local setup we furthermore introduce simple communication protocols. Of all approaches, the mean embedding representation using neural network features enables the richest information exchange between neighboring agents facilitating the development of more complex collective strategies.Comment: 31 pages, 12 figures, version 3 (published in JMLR Volume 20

    Lyapunov Approach to Consensus Problems

    Full text link
    This paper investigates the weighted-averaging dynamic for unconstrained and constrained consensus problems. Through the use of a suitably defined adjoint dynamic, quadratic Lyapunov comparison functions are constructed to analyze the behavior of weighted-averaging dynamic. As a result, new convergence rate results are obtained that capture the graph structure in a novel way. In particular, the exponential convergence rate is established for unconstrained consensus with the exponent of the order of 1O(1/(mlog2m))1-O(1/(m\log_2m)). Also, the exponential convergence rate is established for constrained consensus, which extends the existing results limited to the use of doubly stochastic weight matrices

    Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning

    Full text link
    Swarm systems constitute a challenging problem for reinforcement learning (RL) as the algorithm needs to learn decentralized control policies that can cope with limited local sensing and communication abilities of the agents. While it is often difficult to directly define the behavior of the agents, simple communication protocols can be defined more easily using prior knowledge about the given task. In this paper, we propose a number of simple communication protocols that can be exploited by deep reinforcement learning to find decentralized control policies in a multi-robot swarm environment. The protocols are based on histograms that encode the local neighborhood relations of the agents and can also transmit task-specific information, such as the shortest distance and direction to a desired target. In our framework, we use an adaptation of Trust Region Policy Optimization to learn complex collaborative tasks, such as formation building and building a communication link. We evaluate our findings in a simulated 2D-physics environment, and compare the implications of different communication protocols.Comment: 13 pages, 4 figures, version 2, accepted at ANTS 201
    corecore