3 research outputs found

    "Distributed routing schemes for ad hoc networks using d-SPR sets"

    Get PDF
    Michael Q. Rieck is an associate professor at Drake University in Des Moines, Iowa, USA. He holds a Ph. D. in mathematics from the University of South Florida. His primary research interests are in the areas of camera tracking and ad hoc wireless networks. He has also published results in the areas of triangle geometry, discrete mathematics, linear algebra, finite fields and association schemes.In this paper, we propose several new distributed algorithms for producing sets of nodes that can be used to form backbones of an ad hoc wireless network. Our focus is on producing small sets that are d-hop connected and d-dominating and have a desirable ‘d-shortest path property’ which we call d-SPR sets. These algorithms produce sets that are considerably smaller than those produced by an algorithm previously introduced by the authors. Our proposed algorithms, except the greedy ones, have constant time complexity in the restricted sense that the time required is unaffected by the size of the network, assuming however that the node degrees are bounded by a constant. The performance of the new algorithms are compared, and also compared with the authors' earlier algorithm, and with an adaptation of an algorithm of Wu and Li

    Scalable energy-efficient routing in mobile Ad hoc network

    Get PDF
    The quick deployment without any existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for dynamic situations such as military and rescue operations, disaster recovery, and so on and so forth. However, routing remains one of the major issues in MANET due to the highly dynamic and distributed environment. Energy consumption is also a significant issue in ad hoc networks since the nodes are battery powered. This report discusses some major dominating set based approaches to perform energy efficient routing in mobile ad hoc networks. It also presents the performance results for each of these mentioned approaches in terms of throughput, average end to end delay and the life time in terms of the first node failure. Based on the simulation results, I identified the key issues in these protocols regarding network life time. In this report, I propose and discuss a new approach “Dynamic Dominating Set Generation Algorithm” (DDSG) to optimize the network life time. This algorithm dynamically selects dominating nodes during the process of routing and thus creates a smaller dominating set. DDSG algorithm thereby eliminates the energy consumption from the non-used dominating nodes. In order to further increase the network life time, the algorithm takes into consideration the threshold settings which helps to distribute the process of routing within the network. This helps to eliminate a single dominating node from getting drained out by continuous transmission and reception of packets. In this report, the detailed algorithmic design and performance results through simulation is discussed
    corecore