57 research outputs found

    Synchronising H∞ robust distributed controller for multi-robotic manipulators

    Get PDF
    In this paper the problem of synchronisation of multiple robotic manipulators using Hoo robust distributed control systems with respect to the parameter uncertainties and disturbance inputs acting on the manipulators is addressed. Robust synchronising controllers only use the information of outputs of the manipulators, and the corresponding parameters of these output-feedback controllers are designed by computing a series of linear matrix inequalities instead of solving the complex differential (e.g. Hamilton-Jacobi) (in)equalities. The proposed controller can guarantee H∞ robust performance with respect to the external disturbance inputs and parameters uncertainties, asymptotic stability and synchronisation in the networked manipulators. Using an illustrative example we compare the results extracted in this paper to other works existing in the literature

    Cooperative Control of Nonlinear Multi-Agent Systems

    Get PDF
    Multi-agent systems have attracted great interest due to their potential applications in a variety of areas. In this dissertation, a nonlinear consensus algorithm is developed for networked Euler-Lagrange multi-agent systems. The proposed consensus algorithm guarantees that all agents can reach a common state in the workspace. Meanwhile, the external disturbances and structural uncertainties are fundamentally considered in the controller design. The robustness of the proposed consensus algorithm is then demonstrated in the stability analysis. Furthermore, experiments are conducted to validate the effectiveness of the proposed consensus algorithm. Next, a distributed leader-follower formation tracking controller is developed for networked nonlinear multi-agent systems. The dynamics of each agent are modeled by Euler-Lagrange equations, and all agents are guaranteed to track a desired time-varying trajectory in the presence of noise. The fault diagnosis strategy of the nonlinear multi-agent system is also investigated with the help of differential geometry tools. The effectiveness of the proposed controller is verified through simulations. To further extend the application area of the multi-agent technique, a distributed robust controller is then developed for networked Lipschitz nonlinear multi-agent systems. With the appearance of system uncertainties and external disturbances, a sampled-data feedback control protocol is carried out through the Lyapunov functional approach. The effectiveness of the proposed controller is verified by numerical simulations. Other than the robustness and sampled-data information exchange, this dissertation is also concerned with the event-triggered consensus problem for the Lipschitz nonlinear multi-agent systems. Furthermore, the sufficient condition for the stochastic stabilization of the networked control system is proposed based on the Lyapunov functional method. Finally, simulation is conducted to demonstrate the effectiveness of the proposed control algorithm. In this dissertation, the cooperative control of networked Euler-Lagrange systems and networked Lipschitz systems is investigated essentially with the assistance of nonlinear control theory and diverse controller design techniques. The main objective of this work is to propose realizable control algorithms for nonlinear multi-agent systems

    A stability-theory perspective to synchronisation of heterogeneous networks

    Get PDF
    Dans ce mémoire, nous faisons une présentation de nos recherches dans le domaine de la synchronisation des systèmes dynamiques interconnectés en réseau. Une des originalités de nos travaux est qu'ils portent sur les réseaux hétérogènes, c'est à dire, des systèmes à dynamiques diverses. Au centre du cadre d'analyse que nous proposons, nous introduisons le concept de dynamique émergente. Il s'agit d'une dynamique "moyennée'' propre au réseau lui-même. Sous l'hypothèse qu'il existe un attracteur pour cette dynamique, nous montrons que le problème de synchronisation se divise en deux problèmes duaux : la stabilité de l'attracteur et la convergence des trajectoires de chaque système vers celles générées par la dynamique émergente. Nous étudions aussi le cas particulier des oscillateurs de Stuart-Landau

    Adaptive control of nonlinear system based on QFT application to 3-DOF flight control system

    Get PDF
    Research on unmanned aerial vehicle (UAV) became popular because of remote flight access and cost-effective solution. 3-degree of freedom (3-DOF) unmanned helicopters is one of the popular research UAV, because of its high load carrying capacity with a smaller number of motor and requirement of forethought motor control dynamics. Various control algorithms are investigated and designed for the motion control of the 3DOF helicopter. Three-degree-of-freedom helicopter model configuration presents the same advantages of 3-DOF helicopters along with increased payload capacity, increase stability in hover, manoeuvrability and reduced mechanical complexity. Numerous research institutes have chosen the three-degree-of-freedom as an ideal platform to develop intelligent controllers. In this research paper, we discussed about a hybrid controller that combined with Adaptive and Quantitative Feedback theory (QFT) controller for the 3-DOF helicopter model. Though research on Adaptive and QFT controller are not a new subject, the first successful single Adaptive aircraft flight control systems have been designed for the U.S. Air Force in Wright Laboratories unmanned research vehicle, Lambda [1]. Previously researcher focused on structured uncertainties associated with controller for the flight conditions theoretically. The development of simulationbased design on flight control system response, opened a new dimension for researcher to design physical flight controller for plant parameter uncertainties. At the beginning, our research was to investigates the possibility of developing the QFT combined with Adaptive controller to control a single pitch angle that meets flying quality conditions of automatic flight control. Finally, we successfully designed the hybrid controller that is QFT based adaptive controller for all the three angles

    Consensus Based Networking of Distributed Virtual Environments

    Get PDF
    Distributed Virtual Environments (DVEs) are challenging to create as the goals of consistency and responsiveness become contradictory under increasing latency. DVEs have been considered as both distributed transactional databases and force-reflection systems. Both are good approaches, but they do have drawbacks. Transactional systems do not support Level 3 (L3) collaboration: manipulating the same degree-of-freedom at the same time. Force-reflection requires a client-server architecture and stabilisation techniques. With Consensus Based Networking (CBN), we suggest DVEs be considered as a distributed data-fusion problem. Many simulations run in parallel and exchange their states, with remote states integrated with continous authority. Over time the exchanges average out local differences, performing a distribued-average of a consistent, shared state. CBN aims to build simulations that are highly responsive, but consistent enough for use cases such as the piano-movers problem. CBN's support for heterogeneous nodes can transparently couple different input methods, avoid the requirement of determinism, and provide more options for personal control over the shared experience. Our work is early, however we demonstrate many successes, including L3 collaboration in room-scale VR, 1000's of interacting objects, complex configurations such as stacking, and transparent coupling of haptic devices. These have been shown before, but each with a different technique; CBN supports them all within a single, unified system

    Distributed Optimal State Consensus for Multiple Circuit Systems with Disturbance Rejection

    Get PDF
    This paper investigates the distributed optimal state consensus problem for an electronic system with a group of circuit units, where the dynamics of each unit is modeled by a Chua's circuit in the presence of disturbance generated by an external system. By means of the internal model approach and feedback control, a compensator-based continuous-time algorithm is proposed to minimize the sum of all cost functions associated with each individual unit in a cooperative manner. Supported by convex analysis, graph theory and Lyapunov theory, it is proved that the proposed algorithm is exponentially convergent. Compared with the centralized algorithms, the proposed protocol possesses remarkable superiority in improving scalability and reliability of multiple circuit systems. Moreover, we also study the distributed uncertain optimal state consensus problem and a linear regret bound is obtained in this case. Finally, a state synchronization example is provided to validate the effectiveness of the proposed algorithms

    Adaptive control of nonlinear system based on QFT application to 3-DOF flight control system

    Get PDF
    Research on unmanned aerial vehicle (UAV) became popular because of remote flight access and cost-effective solution. 3-degree of freedom (3-DOF) unmanned helicopters is one of the popular research UAV, because of its high load carrying capacity with a smaller number of motor and requirement of forethought motor control dynamics. Various control algorithms are investigated and designed for the motion control of the 3DOF helicopter. Three-degree-of-freedom helicopter model configuration presents the same advantages of 3-DOF helicopters along with increased payload capacity, increase stability in hover, manoeuvrability and reduced mechanical complexity. Numerous research institutes have chosen the three-degree-of-freedom as an ideal platform to develop intelligent controllers. In this research paper, we discussed about a hybrid controller that combined with Adaptive and Quantitative Feedback theory (QFT) controller for the 3-DOF helicopter model. Though research on Adaptive and QFT controller are not a new subject, the first successful single Adaptive aircraft flight control systems have been designed for the U.S. Air Force in Wright Laboratories unmanned research vehicle, Lambda [1]. Previously researcher focused on structured uncertainties associated with controller for the flight conditions theoretically. The development of simulationbased design on flight control system response, opened a new dimension for researcher to design physical flight controller for plant parameter uncertainties. At the beginning, our research was to investigates the possibility of developing the QFT combined with Adaptive controller to control a single pitch angle that meets flying quality conditions of automatic flight control. Finally, we successfully designed the hybrid controller that is QFT based adaptive controller for all the three angles

    Consensus Based Networking of Distributed Virtual Environments.

    Get PDF
    Distributed Virtual Environments (DVEs) are challenging to create as the goals of consistency and responsiveness become contradictory under increasing latency. DVEs have been considered as both distributed transactional databases and force-reflection systems. Both are good approaches, but they do have drawbacks. Transactional systems do not support Level 3 (L3) collaboration: manipulating the same degree-of-freedom at the same time. Force-reflection requires a client-server architecture and stabilisation techniques. With Consensus Based Networking (CBN), we suggest DVEs be considered as a distributed data-fusion problem. Many simulations run in parallel and exchange their states, with remote states integrated with continous authority. Over time the exchanges average out local differences, performing a distribued-average of a consistent, shared state. CBN aims to build simulations that are highly responsive, but consistent enough for use cases such as the piano-movers problem. CBN's support for heterogeneous nodes can transparently couple different input methods, avoid the requirement of determinism, and provide more options for personal control over the shared experience. Our work is early, however we demonstrate many successes, including L3 collaboration in room-scale VR, 1000's of interacting objects, complex configurations such as stacking, and transparent coupling of haptic devices. These have been shown before, but each with a different technique; CBN supports them all within a single, unified system
    corecore