512,603 research outputs found
Communication-efficient Distributed Multi-resource Allocation
In several smart city applications, multiple resources must be allocated
among competing agents that are coupled through such shared resources and are
constrained --- either through limitations of communication infrastructure or
privacy considerations. We propose a distributed algorithm to solve such
distributed multi-resource allocation problems with no direct inter-agent
communication. We do so by extending a recently introduced additive-increase
multiplicative-decrease (AIMD) algorithm, which only uses very little
communication between the system and agents. Namely, a control unit broadcasts
a one-bit signal to agents whenever one of the allocated resources exceeds
capacity. Agents then respond to this signal in a probabilistic manner. In the
proposed algorithm, each agent makes decision of its resource demand locally
and an agent is unaware of the resource allocation of other agents. In
empirical results, we observe that the average allocations converge over time
to optimal allocations.Comment: To appear in IEEE International Smart Cities Conference (ISC2 2018),
Kansas City, USA, September, 2018. arXiv admin note: substantial text overlap
with arXiv:1711.0197
Resilient Distributed Optimization Algorithms for Resource Allocation
Distributed algorithms provide flexibility over centralized algorithms for
resource allocation problems, e.g., cyber-physical systems. However, the
distributed nature of these algorithms often makes the systems susceptible to
man-in-the-middle attacks, especially when messages are transmitted between
price-taking agents and a central coordinator. We propose a resilient strategy
for distributed algorithms under the framework of primal-dual distributed
optimization. We formulate a robust optimization model that accounts for
Byzantine attacks on the communication channels between agents and coordinator.
We propose a resilient primal-dual algorithm using state-of-the-art robust
statistics methods. The proposed algorithm is shown to converge to a
neighborhood of the robust optimization model, where the neighborhood's radius
is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201
Message passing resource allocation for the uplink of multicarrier systems
We propose a novel distributed resource allocation scheme for the up-link of
a cellular multi-carrier system based on the message passing (MP) algorithm. In
the proposed approach each transmitter iteratively sends and receives
information messages to/from the base station with the goal of achieving an
optimal resource allocation strategy. The exchanged messages are the solution
of small distributed allocation problems. To reduce the computational load, the
MP problems at the terminals follow a dynamic programming formulation. The
advantage of the proposed scheme is that it distributes the computational
effort among all the transmitters in the cell and it does not require the
presence of a central controller that takes all the decisions. Numerical
results show that the proposed approach is an excellent solution to the
resource allocation problem for cellular multi-carrier systems.Comment: 6 pages, 4 figure
A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning
Automatic decision-making approaches, such as reinforcement learning (RL),
have been applied to (partially) solve the resource allocation problem
adaptively in the cloud computing system. However, a complete cloud resource
allocation framework exhibits high dimensions in state and action spaces, which
prohibit the usefulness of traditional RL techniques. In addition, high power
consumption has become one of the critical concerns in design and control of
cloud computing systems, which degrades system reliability and increases
cooling cost. An effective dynamic power management (DPM) policy should
minimize power consumption while maintaining performance degradation within an
acceptable level. Thus, a joint virtual machine (VM) resource allocation and
power management framework is critical to the overall cloud computing system.
Moreover, novel solution framework is necessary to address the even higher
dimensions in state and action spaces. In this paper, we propose a novel
hierarchical framework for solving the overall resource allocation and power
management problem in cloud computing systems. The proposed hierarchical
framework comprises a global tier for VM resource allocation to the servers and
a local tier for distributed power management of local servers. The emerging
deep reinforcement learning (DRL) technique, which can deal with complicated
control problems with large state space, is adopted to solve the global tier
problem. Furthermore, an autoencoder and a novel weight sharing structure are
adopted to handle the high-dimensional state space and accelerate the
convergence speed. On the other hand, the local tier of distributed server
power managements comprises an LSTM based workload predictor and a model-free
RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed
Computing (ICDCS 2017
Improved Convergence Rates for Distributed Resource Allocation
In this paper, we develop a class of decentralized algorithms for solving a
convex resource allocation problem in a network of agents, where the agent
objectives are decoupled while the resource constraints are coupled. The agents
communicate over a connected undirected graph, and they want to collaboratively
determine a solution to the overall network problem, while each agent only
communicates with its neighbors. We first study the connection between the
decentralized resource allocation problem and the decentralized consensus
optimization problem. Then, using a class of algorithms for solving consensus
optimization problems, we propose a novel class of decentralized schemes for
solving resource allocation problems in a distributed manner. Specifically, we
first propose an algorithm for solving the resource allocation problem with an
convergence rate guarantee when the agents' objective functions are
generally convex (could be nondifferentiable) and per agent local convex
constraints are allowed; We then propose a gradient-based algorithm for solving
the resource allocation problem when per agent local constraints are absent and
show that such scheme can achieve geometric rate when the objective functions
are strongly convex and have Lipschitz continuous gradients. We have also
provided scalability/network dependency analysis. Based on these two
algorithms, we have further proposed a gradient projection-based algorithm
which can handle smooth objective and simple constraints more efficiently.
Numerical experiments demonstrates the viability and performance of all the
proposed algorithms
Asynchronous Auction for Distributed Nonlinear Resource Allocation Problem
Resource Allocation Problems (RAPs) are concerned with the optimal allocation of resources to tasks. Problems in fields such as search theory, statistics, finance, economics, logistics, sensor & wireless networks fit this formulation. In literature, several centralized/synchronous algorithms have been proposed including recently proposed auction algorithm, RAP Auction. Here we present asynchronous implementation of RAP Auction for distributed RAPs.Air Force Office of Scientific Research (FA9550-07-1-0361) and Office of the Director, Defense Research and Engineering (Multidisciplinary University Research Initiative Grant FA9550-06-1-0324
Optimal Distributed Resource Allocation for Decode-and-Forward Relay Networks
This paper presents a distributed resource allocation algorithm to jointly
optimize the power allocation, channel allocation and relay selection for
decode-and-forward (DF) relay networks with a large number of sources, relays,
and destinations. The well-known dual decomposition technique cannot directly
be applied to resolve this problem, because the achievable data rate of DF
relaying is not strictly concave, and thus the local resource allocation
subproblem may have non-unique solutions. We resolve this non-strict concavity
problem by using the idea of the proximal point method, which adds quadratic
terms to make the objective function strictly concave. However, the proximal
solution adds an extra layer of iterations over typical duality based
approaches, which can significantly slow down the speed of convergence. To
address this key weakness, we devise a fast algorithm without the need for this
additional layer of iterations, which converges to the optimal solution. Our
algorithm only needs local information exchange, and can easily adapt to
variations of network size and topology. We prove that our distributed resource
allocation algorithm converges to the optimal solution. A channel resource
adjustment method is further developed to provide more channel resources to the
bottleneck links and realize traffic load balance. Numerical results are
provided to illustrate the benefits of our algorithm
- …
