512,603 research outputs found

    Communication-efficient Distributed Multi-resource Allocation

    Full text link
    In several smart city applications, multiple resources must be allocated among competing agents that are coupled through such shared resources and are constrained --- either through limitations of communication infrastructure or privacy considerations. We propose a distributed algorithm to solve such distributed multi-resource allocation problems with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, which only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent makes decision of its resource demand locally and an agent is unaware of the resource allocation of other agents. In empirical results, we observe that the average allocations converge over time to optimal allocations.Comment: To appear in IEEE International Smart Cities Conference (ISC2 2018), Kansas City, USA, September, 2018. arXiv admin note: substantial text overlap with arXiv:1711.0197

    Resilient Distributed Optimization Algorithms for Resource Allocation

    Get PDF
    Distributed algorithms provide flexibility over centralized algorithms for resource allocation problems, e.g., cyber-physical systems. However, the distributed nature of these algorithms often makes the systems susceptible to man-in-the-middle attacks, especially when messages are transmitted between price-taking agents and a central coordinator. We propose a resilient strategy for distributed algorithms under the framework of primal-dual distributed optimization. We formulate a robust optimization model that accounts for Byzantine attacks on the communication channels between agents and coordinator. We propose a resilient primal-dual algorithm using state-of-the-art robust statistics methods. The proposed algorithm is shown to converge to a neighborhood of the robust optimization model, where the neighborhood's radius is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201

    Message passing resource allocation for the uplink of multicarrier systems

    Full text link
    We propose a novel distributed resource allocation scheme for the up-link of a cellular multi-carrier system based on the message passing (MP) algorithm. In the proposed approach each transmitter iteratively sends and receives information messages to/from the base station with the goal of achieving an optimal resource allocation strategy. The exchanged messages are the solution of small distributed allocation problems. To reduce the computational load, the MP problems at the terminals follow a dynamic programming formulation. The advantage of the proposed scheme is that it distributes the computational effort among all the transmitters in the cell and it does not require the presence of a central controller that takes all the decisions. Numerical results show that the proposed approach is an excellent solution to the resource allocation problem for cellular multi-carrier systems.Comment: 6 pages, 4 figure

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    Improved Convergence Rates for Distributed Resource Allocation

    Full text link
    In this paper, we develop a class of decentralized algorithms for solving a convex resource allocation problem in a network of nn agents, where the agent objectives are decoupled while the resource constraints are coupled. The agents communicate over a connected undirected graph, and they want to collaboratively determine a solution to the overall network problem, while each agent only communicates with its neighbors. We first study the connection between the decentralized resource allocation problem and the decentralized consensus optimization problem. Then, using a class of algorithms for solving consensus optimization problems, we propose a novel class of decentralized schemes for solving resource allocation problems in a distributed manner. Specifically, we first propose an algorithm for solving the resource allocation problem with an o(1/k)o(1/k) convergence rate guarantee when the agents' objective functions are generally convex (could be nondifferentiable) and per agent local convex constraints are allowed; We then propose a gradient-based algorithm for solving the resource allocation problem when per agent local constraints are absent and show that such scheme can achieve geometric rate when the objective functions are strongly convex and have Lipschitz continuous gradients. We have also provided scalability/network dependency analysis. Based on these two algorithms, we have further proposed a gradient projection-based algorithm which can handle smooth objective and simple constraints more efficiently. Numerical experiments demonstrates the viability and performance of all the proposed algorithms

    Asynchronous Auction for Distributed Nonlinear Resource Allocation Problem

    Full text link
    Resource Allocation Problems (RAPs) are concerned with the optimal allocation of resources to tasks. Problems in fields such as search theory, statistics, finance, economics, logistics, sensor & wireless networks fit this formulation. In literature, several centralized/synchronous algorithms have been proposed including recently proposed auction algorithm, RAP Auction. Here we present asynchronous implementation of RAP Auction for distributed RAPs.Air Force Office of Scientific Research (FA9550-07-1-0361) and Office of the Director, Defense Research and Engineering (Multidisciplinary University Research Initiative Grant FA9550-06-1-0324

    Optimal Distributed Resource Allocation for Decode-and-Forward Relay Networks

    Full text link
    This paper presents a distributed resource allocation algorithm to jointly optimize the power allocation, channel allocation and relay selection for decode-and-forward (DF) relay networks with a large number of sources, relays, and destinations. The well-known dual decomposition technique cannot directly be applied to resolve this problem, because the achievable data rate of DF relaying is not strictly concave, and thus the local resource allocation subproblem may have non-unique solutions. We resolve this non-strict concavity problem by using the idea of the proximal point method, which adds quadratic terms to make the objective function strictly concave. However, the proximal solution adds an extra layer of iterations over typical duality based approaches, which can significantly slow down the speed of convergence. To address this key weakness, we devise a fast algorithm without the need for this additional layer of iterations, which converges to the optimal solution. Our algorithm only needs local information exchange, and can easily adapt to variations of network size and topology. We prove that our distributed resource allocation algorithm converges to the optimal solution. A channel resource adjustment method is further developed to provide more channel resources to the bottleneck links and realize traffic load balance. Numerical results are provided to illustrate the benefits of our algorithm
    corecore