318 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Full-Duplex MIMO Relaying Powered by Wireless Energy Transfer

    Full text link
    We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipped with two sets of antennas to enable full-duplex communications. Three different interference mitigation schemes are studied, namely, 1) optimal 2) zero-forcing and 3) maximum ratio combining/maximum ratio transmission. We develop new outage probability expressions to investigate delay-constrained transmission throughput of these schemes. Our analysis show interesting performance comparisons of the considered precoding schemes for different system and link parameters.Comment: Accepted for IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2015), Invited pape

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Rate-Energy Balanced Precoding Design for SWIPT based Two-Way Relay Systems

    Get PDF
    Simultaneous wireless information and power transfer (SWIPT) technique is a popular strategy to convey both information and RF energy for harvesting at receivers. In this regard, we consider a two-way relay system with multiple users and a multi-antenna relay employing SWIPT strategy, where splitting the received signal leads to a rate-energy trade-off. In literature, the works on transceiver design have been studied using computationally intensive and suboptimal convex relaxation based schemes. In this paper, we study the balanced precoder design using chordal distance (CD) decomposition, which incurs much lower complexity, and is flexible to dynamic energy requirements. It is analyzed that given a non-negative value of CD, the achieved harvested energy for the proposed balanced precoder is higher than that for the perfect interference alignment (IA) precoder. The corresponding loss in sum rates is also analyzed via an upper bound. Simulation results add that the IA schemes based on mean-squared error are better suited for the SWIPT maximization than the subspace alignment-based methods.Comment: arXiv admin note: text overlap with arXiv:2101.1216

    Wireless Powered Communication Networks

    Get PDF
    The limited life time of batteries is a crucial issue in energy-constrained wireless communications. Recently, the radio frequency (RF) wireless energy transfer (WET) technique has been developed as a new practical method to extend the life time of wireless communication networks. Inspired by this, wireless-powered communication network (WPCN) has attracted much attention. Therefore, in this thesis, we consider practical WET and wireless-powered information transmission in WPCNs. First we investigate a WPCN with two nodes, in which an access point (AP) exchanges information with a wireless-powered user. The user is assumed to have no embedded energy supply and needs to harvest energy from RF signals broadcast by the AP. Differing from existing work that focuses on the design of wireless-powered communication with one-way information flow, we deal with a more general scenario where both the AP and the user have information to transmit. Considering that the AP and user can work in either half-duplex or full-duplex mode as well as having two practical receiver architectures at the user side, we propose five elementary communication protocols for the considered system. Moreover, we define the concept of a throughput region to characterize the tradeoff between the uplink and downlink throughput in all proposed protocols. Numerical simulations are finally performed to compare the throughput regions of the proposed five elementary protocols. To further the study on WPCN, we investigate a wireless-powered two-way relay system, in which two wireless-powered sources exchange information through a multi-antenna relay. Both sources are assumed to have no embedded energy supply and thus first need to harvest energy from the radio frequency signals broadcast by the relay before exchanging their information via the relay. We aim to maximize the sum throughput of both sources by jointly optimizing the time switching duration, the energy beamforming vector and the precoding matrix at the relay. The formulated problem is non-convex and hard to solve in its original form. Motivated by this, we simplify the problem by reducing the number of variables and by decomposing the precoding matrix into a transmit vector and a receive vector. We then propose a bisection search, a 1-D search and an iterative algorithm to optimize each variable. Numerical results show that our proposed scheme can achieve higher throughput than the conventional scheme without optimization on the beamforming vector and precoding matrix at the relay. Due to the high attenuation of RF energy over a long distance, RF based wireless-powered communication is usually designed for low-power scenarios, e.g., wireless-powered sensor networks. Recently, magnetic induction (MI) based WET has been proposed to wirelessly transfer a large amount of energy. Inspired by this, we investigate MI based WET in WPCN. Specifically, we study a MI based wireless-powered relaying network, in which a MI source transmits information to a MI destination, with the help of a MI based wireless powered relay. We propose four active relaying schemes, which consider different relaying modes and different energy harvesting receiver architectures at the relay. We then aim to maximize the end-to-end throughput of each scheme by using a bisection search, a water-filling algorithm, a Lagrange multiplier, quasi-convex programming and an iterative algorithm. We compare the proposed active relaying schemes with passive relaying. Numerical results show that the proposed relaying schemes with a decode-and-forward relaying mode significantly improve the throughput over passive relaying
    • …
    corecore