71,763 research outputs found

    Packet Size Optimization for Cognitive Radio Sensor Networks Aided Internet of Things

    Get PDF
    Cognitive Radio Sensor Networks (CRSN) is state of the art communication paradigm for power constrained short range data communication. It is one of the potential technology adopted for Internet of Things (IoT) and other futuristic Machine to Machine (M2M) based applications. Many of these applications are power constrained and delay sensitive. Therefore, CRSN architecture must be coupled with different adaptive and robust communication schemes to take care of the delay and energy-efficiency at the same time. Considering the tradeoff that exists in terms of energy efficiency and overhead delay for a given data packet length, it is proposed to transmit the physical layer payload with an optimal packet size (OPS) depending on the network condition. Furthermore, due to the cognitive feature of CRSN architecture overhead energy consumption due to channel sensing and channel handoff plays a critical role. Based on the above premises, in this paper we propose a heuristic exhaustive search based Algorithm-1 and a computationally efficient suboptimal low complexity Karuh-Kuhn- Tucker (KKT) condition based Algorithm-2 to determine the optimal packet size in CRSN architecture using variable rate m-QAM modulation. The proposed algorithms are implemented along with two main cognitive radio assisted channel access strategies based on Distributed Time Slotted-Cognitive Medium Access Control (DTS-CMAC) and Centralized Common Control Channel based Cognitive Medium Access Control (CC-CMAC) and their performances are compared. The simulation results reveals that proposed Algorithm-2 outperforms Algorithm-1 by a significant margin in terms of its implementation time. For the exhaustive search based Algorithm-1 the average time consumed to determine OPS for a given number of cognitive users is 1.2 seconds while for KKT based Algorithm-2 it is of the order of 5 to 10 ms. CC-CMAC with OPS is most efficient in terms of overall energy consumption but incurs more delay as compared to DTS-CMAC with OPS scheme

    Spectrum Map and its Application in Cognitive Radio Networks

    Get PDF
    Recent measurements on radio spectrum usage have revealed the abundance of underutilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access. Cognitive radio based secondary networks that utilize such unused spectrum holes in the licensed band, have been proposed as a possible solution to the spectrum crisis. The idea is to detect times when a particular licensed band is unused and use it for transmission without causing interference to the licensed user. We argue that prior knowledge about occupancy of such bands and the corresponding achievable performance metrics can potentially help secondary networks to devise effective strategies to improve utilization. In this work, we use Shepard\u27s method of interpolation to create a spectrum map that provides a spatial distribution of spectrum usage over a region of interest. It is achieved by intelligently fusing the spectrum usage reports shared by the secondary nodes at various locations. The obtained spectrum map is a continuous and differentiable 2-dimension distribution function in space. With the spectrum usage distribution known, we show how different radio spectrum and network performance metrics like channel capacity, secondary network throughput, spectral efficiency, and bit error rate can be estimated. We show the applicability of the spectrum map in solving the intra-cell channel allocation problem in centralized cognitive radio networks, such as IEEE 802.22. We propose a channel allocation scheme where the base station allocates interference free channels to the consumer premise equipments (CPE) using the spectrum map that it creates by fusing the spectrum usage information shared by some CPEs. The most suitable CPEs for information sharing are chosen on a dynamic basis using an iterative clustering algorithm. Next, we present a contention based media access control (MAC) protocol for distributed cognitive radio network. The unlicensed secondary users contend among themselves over a common control channel. Winners of the contention get to access the available channels ensuring high utilization and minimum collision with primary incumbent. Last, we propose a multi-channel, multi-hop routing protocol with secondary transmission power control. The spectrum map, created and maintained by a set of sensors, acts as the basis of finding the best route for every source destination pair. The proposed routing protocol ensures primary receiver protection and maximizes achievable link capacity. Through simulation experiments we show the correctness of the prediction model and how it can be used by secondary networks for strategic positioning of secondary transmitter-receiver pairs and selecting the best candidate channels. The simulation model mimics realistic distribution of TV stations for urban and non-urban areas. Results validate the nature and accuracy of estimation, prediction of performance metrics, and efficiency of the allocation process in an IEEE 802.22 network. Results for the proposed MAC protocol show high channel utilization with primary quality of service degradation within a tolerable limit. Performance evaluation of the proposed routing scheme reveals that it ensures primary receiver protection through secondary power control and maximizes route capacity

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page
    corecore