155,033 research outputs found

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Control of Networked Multiagent Systems with Uncertain Graph Topologies

    Full text link
    Multiagent systems consist of agents that locally exchange information through a physical network subject to a graph topology. Current control methods for networked multiagent systems assume the knowledge of graph topologies in order to design distributed control laws for achieving desired global system behaviors. However, this assumption may not be valid for situations where graph topologies are subject to uncertainties either due to changes in the physical network or the presence of modeling errors especially for multiagent systems involving a large number of interacting agents. Motivating from this standpoint, this paper studies distributed control of networked multiagent systems with uncertain graph topologies. The proposed framework involves a controller architecture that has an ability to adapt its feed- back gains in response to system variations. Specifically, we analytically show that the proposed controller drives the trajectories of a networked multiagent system subject to a graph topology with time-varying uncertainties to a close neighborhood of the trajectories of a given reference model having a desired graph topology. As a special case, we also show that a networked multi-agent system subject to a graph topology with constant uncertainties asymptotically converges to the trajectories of a given reference model. Although the main result of this paper is presented in the context of average consensus problem, the proposed framework can be used for many other problems related to networked multiagent systems with uncertain graph topologies.Comment: 14 pages, 2 figure

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    Corporate Risk-Taking and the Decline of Personal Blame

    Get PDF
    The ability to maintain state awareness in the face of unexpected and unmodeled errors and threats is a defining feature of a resilient control system. Therefore, in this paper, we study the problem of distributed fault detection and isolation (FDI) in large networked systems with uncertain system models. The linear networked system is composed of interconnected subsystems and may be represented as a graph. The subsystems are represented by nodes, while the edges correspond to the interconnections between subsystems. Considering faults that may occur on the interconnections and subsystems, as our first contribution, we propose a distributed scheme to jointly detect and isolate faults occurring in nodes and edges of the system. As our second contribution, we analyze the behavior of the proposed scheme under model uncertainties caused by the addition or removal of edges. Additionally, we propose a novel distributed FDI scheme based on local models and measurements that is resilient to changes outside of the local subsystem and achieves FDI. Our third contribution addresses the complexity reduction of the distributed FDI method, by characterizing the minimum amount of model information and measurements needed to achieve FDI and by reducing the number of monitoring nodes. The proposed methods can be fused to design a scalable and resilient distributed FDI architecture that achieves local FDI despite unknown changes outside the local subsystem. The proposed approach is illustrated by numerical experiments on the IEEE 118-bus power network benchmark.QC 20141114</p
    corecore