2,002 research outputs found

    A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social Media Services

    Get PDF
    The main contribution of this paper is to present the Platform-as-a-Service(PaaS) Environment for Social Multimedia Service (PESMS), derived fromthe Social Media Cloud Computing Service Environment. The main role ofour PESMS is to support the development of social networking services thatinclude audio, image, and video formats. In this paper, we focus in particular on the design and implementation of PESMS, including the transcoding function for processing large amounts of social media in a parallel and distributed manner. PESMS is designed to improve the quality and speed of multimedia conversions by incorporating a multimedia conversion module based on Hadoop, consisting of Hadoop Distributed File System for storing large quantities of social data and MapReduce for distributed parallel processing of these data. In this way, our PESMS has the prospect of exponentially reducing the encoding time for transcoding large numbers of image files into specific formats. To test system performance for the transcoding function, we measured the image transcoding time under a variety of experimental conditions. Based on experiments performed on a 28-node cluster, we found that our system delivered excellent performance in the image transcoding function

    Parallel Hierarchical Affinity Propagation with MapReduce

    Full text link
    The accelerated evolution and explosion of the Internet and social media is generating voluminous quantities of data (on zettabyte scales). Paramount amongst the desires to manipulate and extract actionable intelligence from vast big data volumes is the need for scalable, performance-conscious analytics algorithms. To directly address this need, we propose a novel MapReduce implementation of the exemplar-based clustering algorithm known as Affinity Propagation. Our parallelization strategy extends to the multilevel Hierarchical Affinity Propagation algorithm and enables tiered aggregation of unstructured data with minimal free parameters, in principle requiring only a similarity measure between data points. We detail the linear run-time complexity of our approach, overcoming the limiting quadratic complexity of the original algorithm. Experimental validation of our clustering methodology on a variety of synthetic and real data sets (e.g. images and point data) demonstrates our competitiveness against other state-of-the-art MapReduce clustering techniques
    • …
    corecore