29 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Suboptimal Event-Triggered Consensus of Multiagent Systems

    Get PDF
    In this paper the suboptimal event-triggered consensus problem of Multiagent systems is investigated. Using the combinational measurement approach, each agent only updates its control input at its own event time instants. Thus the total number of events and the amount of controller updates can be significantly reduced in practice. Then, based on the observation of increasing the consensus rate and reducing the number of triggering events, we have proposed the time-average cost of the agent system and developed a suboptimal approach to determine the triggering condition. The effectiveness of the proposed strategy is illustrated by numerical examples

    Event-triggered Consensus for Multi-agent Systems with Asymmetric and Reducible Topologies

    Full text link
    This paper studies the consensus problem of multi-agent systems with asymmetric and reducible topologies. Centralized event-triggered rules are provided so as to reduce the frequency of system's updating. The diffusion coupling feedbacks of each agent are based on the latest observations from its in-neighbors and the system's next observation time is triggered by a criterion based on all agents' information. The scenario of continuous monitoring is first considered, namely all agents' instantaneous states can be observed. It is proved that if the network topology has a spanning tree, then the centralized event-triggered coupling strategy can realize consensus for the multi-agent system. Then the results are extended to discontinuous monitoring, where the system computes its next triggering time in advance without having to observe all agents' states continuously. Examples with numerical simulation are provided to show the effectiveness of the theoretical results
    corecore