56,572 research outputs found

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases

    Seismic Risk Analysis of Revenue Losses, Gross Regional Product and transportation systems.

    Get PDF
    Natural threats like earthquakes, hurricanes or tsunamis have shown seri- ous impacts on communities. In the past, major earthquakes in the United States like Loma Prieta 1989, Northridge 1994, or recent events in Italy like Lā€™Aquila 2009 or Emilia 2012 earthquake emphasized the importance of pre- paredness and awareness to reduce social impacts. Earthquakes impacted businesses and dramatically reduced the gross regional product. Seismic Hazard is traditionally assessed using Probabilistic Seismic Hazard Anal- ysis (PSHA). PSHA well represents the hazard at a specific location, but itā€™s unsatisfactory for spatially distributed systems. Scenario earthquakes overcome the problem representing the actual distribution of shaking over a spatially distributed system. The performance of distributed productive systems during the recovery process needs to be explored. Scenario earthquakes have been used to assess the risk in bridge networks and the social losses in terms of gross regional product reduction. The proposed method for scenario earthquakes has been applied to a real case study: Treviso, a city in the North East of Italy. The proposed method for scenario earthquakes requires three models: one representation of the sources (Italian Seismogenic Zonation 9), one attenuation relationship (Sa- betta and Pugliese 1996) and a model of the occurrence rate of magnitudes (Gutenberg Richter). A methodology has been proposed to reduce thou- sands of scenarios to a subset consistent with the hazard at each location. Earthquake scenarios, along with Mote Carlo method, have been used to simulate business damage. The response of business facilities to earthquake has been obtained from fragility curves for precast industrial building. Fur- thermore, from business damage the reduction of productivity has been simulated using economic data from the National statistical service and a proposed piecewise ā€œloss of functionality modelā€. To simulate the economic process in the time domain, an innovative businesses recovery function has been proposed. The proposed method has been applied to generate scenarios earthquakes at the location of bridges and business areas. The proposed selection method- ology has been applied to reduce 8000 scenarios to a subset of 60. Subse- quently, these scenario earthquakes have been used to calculate three system performance parameters: the risk in transportation networks, the risk in terms of business damage and the losses of gross regional product. A novel model for business recovery process has been tested. The proposed model has been used to represent the business recovery process and simulate the effects of government aids allocated for reconstruction. The proposed method has efficiently modeled the seismic hazard using scenario earthquakes. The scenario earthquakes presented have been used to assess possible consequences of earthquakes in seismic prone zones and to increase the preparedness. Scenario earthquakes have been used to sim- ulate the effects to economy of the impacted area; a significant Gross Regional Product reduction has been shown, up to 77% with an earthquake with 0.0003 probability of occurrence. The results showed that limited funds available after the disaster can be distributed in a more efficient way

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Surface water flood warnings in England: overview, Assessment and recommendations based on survey responses and workshops

    Get PDF
    Following extensive surface water flooding (SWF) in England in summer 2007, progress has been made in improving the management and prediction of this type of flooding. A rainfall threshold-based extreme rainfall alert (ERA) service was launched in 2009 and superseded in 2011 by the surface water flood risk assessment (SWFRA). Through survey responses from local authorities (LAs) and the outcome of workshops with a range of flood professionals, this paper examines the understanding, benefits, limitations and ways to improve the current SWF warning service. The current SWFRA alerts are perceived as useful by district and county LAs, although their understanding of them is limited. The majority of LAs take action upon receipt of SWFRA alerts, and their reactiveness to alerts appears to have increased over the years and as SWFRA superseded ERA. This is a positive development towards increased resilience to SWF. The main drawback of the current service is its broad spatial resolution. Alternatives for providing localised SWF forecast and warnings were analysed, and a two-tier national-local approach, with pre-simulated scenario-based local SWF forecasting and warning systems, was deemed most appropriate by flood professionals given current monetary, human and technological resources
    • ā€¦
    corecore