9,242 research outputs found

    Mining Knowledge in Astrophysical Massive Data Sets

    Full text link
    Modern scientific data mainly consist of huge datasets gathered by a very large number of techniques and stored in very diversified and often incompatible data repositories. More in general, in the e-science environment, it is considered as a critical and urgent requirement to integrate services across distributed, heterogeneous, dynamic "virtual organizations" formed by different resources within a single enterprise. In the last decade, Astronomy has become an immensely data rich field due to the evolution of detectors (plates to digital to mosaics), telescopes and space instruments. The Virtual Observatory approach consists into the federation under common standards of all astronomical archives available worldwide, as well as data analysis, data mining and data exploration applications. The main drive behind such effort being that once the infrastructure will be completed, it will allow a new type of multi-wavelength, multi-epoch science which can only be barely imagined. Data Mining, or Knowledge Discovery in Databases, while being the main methodology to extract the scientific information contained in such MDS (Massive Data Sets), poses crucial problems since it has to orchestrate complex problems posed by transparent access to different computing environments, scalability of algorithms, reusability of resources, etc. In the present paper we summarize the present status of the MDS in the Virtual Observatory and what is currently done and planned to bring advanced Data Mining methodologies in the case of the DAME (DAta Mining & Exploration) project.Comment: Pages 845-849 1rs International Conference on Frontiers in Diagnostics Technologie

    Data Driven Discovery in Astrophysics

    Get PDF
    We review some aspects of the current state of data-intensive astronomy, its methods, and some outstanding data analysis challenges. Astronomy is at the forefront of "big data" science, with exponentially growing data volumes and data rates, and an ever-increasing complexity, now entering the Petascale regime. Telescopes and observatories from both ground and space, covering a full range of wavelengths, feed the data via processing pipelines into dedicated archives, where they can be accessed for scientific analysis. Most of the large archives are connected through the Virtual Observatory framework, that provides interoperability standards and services, and effectively constitutes a global data grid of astronomy. Making discoveries in this overabundance of data requires applications of novel, machine learning tools. We describe some of the recent examples of such applications.Comment: Keynote talk in the proceedings of ESA-ESRIN Conference: Big Data from Space 2014, Frascati, Italy, November 12-14, 2014, 8 pages, 2 figure

    Grids and the Virtual Observatory

    Get PDF
    We consider several projects from astronomy that benefit from the Grid paradigm and associated technology, many of which involve either massive datasets or the federation of multiple datasets. We cover image computation (mosaicking, multi-wavelength images, and synoptic surveys); database computation (representation through XML, data mining, and visualization); and semantic interoperability (publishing, ontologies, directories, and service descriptions)

    Virtual Astronomy, Information Technology, and the New Scientific Methodology

    Get PDF
    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of machine learning in these contexts. Such techniques are forming a methodological foundation for science with massive and complex data sets in general, and are likely to have a much broather impact on the modern society, commerce, information economy, security, etc. There is a powerful emerging synergy between the computationally enabled science and the science-driven computing, which will drive the progress in science, scholarship, and many other venues in the 21st century

    Some Pattern Recognition Challenges in Data-Intensive Astronomy

    Get PDF
    We review some of the recent developments and challenges posed by the data analysis in modern digital sky surveys, which are representative of the information-rich astronomy in the context of Virtual Observatory. Illustrative examples include the problems of an automated star-galaxy classification in complex and heterogeneous panoramic imaging data sets, and an automated, iterative, dynamical classification of transient events detected in synoptic sky surveys. These problems offer good opportunities for productive collaborations between astronomers and applied computer scientists and statisticians, and are representative of the kind of challenges now present in all data-intensive fields. We discuss briefly some emergent types of scalable scientific data analysis systems with a broad applicability.Comment: 8 pages, compressed pdf file, figures downgraded in quality in order to match the arXiv size limi

    Astrophysics in S.Co.P.E

    Get PDF
    S.Co.P.E. is one of the four projects funded by the Italian Government in order to provide Southern Italy with a distributed computing infrastructure for fundamental science. Beside being aimed at building the infrastructure, S.Co.P.E. is also actively pursuing research in several areas among which astrophysics and observational cosmology. We shortly summarize the most significant results obtained in the first two years of the project and related to the development of middleware and Data Mining tools for the Virtual Observatory

    High-energy Astrophysics and the Virtual Observatory

    Full text link
    The Virtual Observatory (VO) will revolutionise the way we do Astronomy by allowing easy access to all astronomical data and by making the handling and analysis of datasets at various locations across the globe much simpler and faster. I report here on the need for the VO and its status in Europe, concentrating on the recently started EURO-VO project, and then give two specific applications of VO tools to high-energy astrophysics.Comment: 12 pages, 3 figures, invited talk at the Workshop ``Multifrequency Behaviour of High Energy Cosmic Sources'', Vulcano, Italy, May 2005, F. Giovannelli et al., in pres

    OPTICON: EC Optical Infrared Coordination Network for Astronomy

    Get PDF
    OPTICON, the ICN Optical Infrared Coordination Network for Astronomy, brings together for the first time the operators of all Europe's medium to large optical-infrared telescopes, the largest corresponding data archives, and several user representatives. The OPTICON partners work with their communities to identify those major challenges for the future development of European optical-infrared astronomy which require Europe-wide collaboration. OPTICON sponsors and coordinates developments towards these goals, involving the entire astronomical community through workshops and meetings targeted towards these agreed common goals of general importance.Comment: to appear in Organizations and Strategies in Astronomy II, Ed. A. Heck, Kluwer Acad. Pub
    • …
    corecore