839 research outputs found

    Mobile robot navigation in unknown environment based on exploration principles

    Get PDF

    Equitable persistent coverage of non-convex environments with graph-based planning

    Get PDF
    In this article, we tackle the problem of persistently covering a complex non-convex environment with a team of robots. We consider scenarios where the coverage quality of the environment deteriorates with time, requiring every point to be constantly revisited. As a first step, our solution finds a partition of the environment where the amount of work for each robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equitable partition through a provably correct distributed control law on the power weights. Compared with other existing partitioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance traversed. Simulation and experimental results are presented to support our proposal

    Equitable Persistent Coverage of Non-Convex Environments with Graph-Based Planning

    Full text link
    In this paper we tackle the problem of persistently covering a complex non-convex environment with a team of robots. We consider scenarios where the coverage quality of the environment deteriorates with time, requiring to constantly revisit every point. As a first step, our solution finds a partition of the environment where the amount of work for each robot, weighted by the importance of each point, is equal. This is achieved using a power diagram and finding an equitable partition through a provably correct distributed control law on the power weights. Compared to other existing partitioning methods, our solution considers a continuous environment formulation with non-convex obstacles. In the second step, each robot computes a graph that gathers sweep-like paths and covers its entire partition. At each planning time, the coverage error at the graph vertices is assigned as weights of the corresponding edges. Then, our solution is capable of efficiently finding the optimal open coverage path through the graph with respect to the coverage error per distance traversed. Simulation and experimental results are presented to support our proposal.Comment: This is the accepted version an already published manuscript. See journal reference for detail

    Analysis and design of Multi-Agent Coverage and Transport algorithms

    Get PDF
    Els sistemes robòtics multi-agents són sistemes que presenten moltes aplicacions en ciència i enginyeria. En aquest treball estudiarem el control de la cobertura, que es centra en col·locar un grup de sensors per optimitzar la cobertura d’una densitat. Ens centrarem en el cas en què la densitat evoluciona en el temps i estudiarem l’ús de la teoría de perturbacions singulars per resoldre el problema. També considerarem grans eixams de robots, on podem fer servir models continus per analitzar el comportament dels agents. Recentment s'ha proposat models continus que incorporen idees de transport òptim en el problema de transport multi-agent. Presentarem aquests treballs i proveirem algunes modificacions.Los sistemas robóticos multi-agentes son sistemas que presentan muchas aplicaciones en ciencia y ingeniería. En este trabajo vamos a estudiar el control de la cobertura, que se centra en colocar un grupo de sensores para optimizar la cobertura de una densidad. Nos vamos a centrar en el casos en que la densidad evoluciona con el tiempo y estudiaremos el uso de la teoría de perturbaciones singulares para resolver el problema. También consideraremos grandes enjambres de robots, donde podemos utilizar modelos continuos para analizar el comportamiento del enjambre. Recientemente se ha propuesto el uso de modelos continuos que incorporan ideas de transporte òptimo para el problema de transporte multi-agente. Vamos a presentar dichos trabajos y proveeremos algunas modificaciones.Multi-agent robotic systems have shown to be useful and reliable solutions to many problems that arise in science and engineering. In this work we will study Coverage Control, that aims to achieve optimal coverage of a density. We will focus on the case when the density has a time dependence and we will study a Singular Perturbation Theory approach to solve the problem. We will also consider large swarms of agents, where we can develop continuous models to analyze the behaviour of the swarm. Recent work has focused on applying ideas from the theory of Optimal Transport to the Multi-Agent Transport problem. We will review the work and provide some modifications.Outgoin

    Multi-Robot Persistent Coverage in Complex Environments

    Get PDF
    Los recientes avances en robótica móvil y un creciente desarrollo de robots móviles asequibles han impulsado numerosas investigaciones en sistemas multi-robot. La complejidad de estos sistemas reside en el diseño de estrategias de comunicación, coordinación y controlpara llevar a cabo tareas complejas que un único robot no puede realizar. Una tarea particularmente interesante es la cobertura persistente, que pretende mantener cubierto en el tiempo un entorno con un equipo de robots moviles. Este problema tiene muchas aplicaciones como aspiración o limpieza de lugares en los que la suciedad se acumula constantemente, corte de césped o monitorización ambiental. Además, la aparición de vehículos aéreos no tripulados amplía estas aplicaciones con otras como la vigilancia o el rescate.Esta tesis se centra en el problema de cubrir persistentemente entornos progresivamente mas complejos. En primer lugar, proponemos una solución óptima para un entorno convexo con un sistema centralizado, utilizando programación dinámica en un horizonte temporalnito. Posteriormente nos centramos en soluciones distribuidas, que son más robustas, escalables y eficientes. Para solventar la falta de información global, presentamos un algoritmo de estimación distribuido con comunicaciones reducidas. Éste permite a los robots teneruna estimación precisa de la cobertura incluso cuando no intercambian información con todos los miembros del equipo. Usando esta estimación, proponemos dos soluciones diferentes basadas en objetivos de cobertura, que son los puntos del entorno en los que más se puedemejorar dicha cobertura. El primer método es un controlador del movimiento que combina un término de gradiente con un término que dirige a los robots hacia sus objetivos. Este método funciona bien en entornos convexos. Para entornos con algunos obstáculos, el segundométodo planifica trayectorias abiertas hasta los objetivos, que son óptimas en términos de cobertura. Finalmente, para entornos complejos no convexos, presentamos un algoritmo capaz de encontrar particiones equitativas para los robots. En dichas regiones, cada robotplanifica trayectorias de longitud finita a través de un grafo de caminos de tipo barrido.La parte final de la tesis se centra en entornos discretos, en los que únicamente un conjunto finito de puntos debe que ser cubierto. Proponemos una estrategia que reduce la complejidad del problema separándolo en tres subproblemas: planificación de trayectoriascerradas, cálculo de tiempos y acciones de cobertura y generación de un plan de equipo sin colisiones. Estos subproblemas más pequeños se resuelven de manera óptima. Esta solución se utiliza en último lugar para una novedosa aplicación como es el calentamiento por inducción doméstico con inductores móviles. En concreto, la adaptamos a las particularidades de una cocina de inducción y mostramos su buen funcionamiento en un prototipo real.Recent advances in mobile robotics and an increasing development of aordable autonomous mobile robots have motivated an extensive research in multi-robot systems. The complexity of these systems resides in the design of communication, coordination and control strategies to perform complex tasks that a single robot can not. A particularly interesting task is that of persistent coverage, that aims to maintain covered over time a given environment with a team of robotic agents. This problem is of interest in many applications such as vacuuming, cleaning a place where dust is continuously settling, lawn mowing or environmental monitoring. More recently, the apparition of useful unmanned aerial vehicles (UAVs) has encouraged the application of the coverage problem to surveillance and monitoring. This thesis focuses on the problem of persistently covering a continuous environment in increasingly more dicult settings. At rst, we propose a receding-horizon optimal solution for a centralized system in a convex environment using dynamic programming. Then we look for distributed solutions, which are more robust, scalable and ecient. To deal with the lack of global information, we present a communication-eective distributed estimation algorithm that allows the robots to have an accurate estimate of the coverage of the environment even when they can not exchange information with all the members of the team. Using this estimation, we propose two dierent solutions based on coverage goals, which are the points of the environment in which the coverage can be improved the most. The rst method is a motion controller, that combines a gradient term with a term that drives the robots to the goals, and which performs well in convex environments. For environments with some obstacles, the second method plans open paths to the goals that are optimal in terms of coverage. Finally, for complex, non-convex environments we propose a distributed algorithm to nd equitable partitions for the robots, i.e., with an amount of work proportional to their capabilities. To cover this region, each robot plans optimal, nite-horizon paths through a graph of sweep-like paths. The nal part of the thesis is devoted to discrete environment, in which only a nite set of points has to be covered. We propose a divide-and-conquer strategy to separate the problem to reduce its complexity into three smaller subproblem, which can be optimally solved. We rst plan closed paths through the points, then calculate the optimal coverage times and actions to periodically satisfy the coverage required by the points, and nally join together the individual plans of the robots into a collision-free team plan that minimizes simultaneous motions. This solution is eventually used for a novel application that is domestic induction heating with mobile inductors. We adapt it to the particular setting of a domestic hob and demonstrate that it performs really well in a real prototype.<br /

    Network Topology Mapping from Partial Virtual Coordinates and Graph Geodesics

    Full text link
    For many important network types (e.g., sensor networks in complex harsh environments and social networks) physical coordinate systems (e.g., Cartesian), and physical distances (e.g., Euclidean), are either difficult to discern or inapplicable. Accordingly, coordinate systems and characterizations based on hop-distance measurements, such as Topology Preserving Maps (TPMs) and Virtual-Coordinate (VC) systems are attractive alternatives to Cartesian coordinates for many network algorithms. Herein, we present an approach to recover geometric and topological properties of a network with a small set of distance measurements. In particular, our approach is a combination of shortest path (often called geodesic) recovery concepts and low-rank matrix completion, generalized to the case of hop-distances in graphs. Results for sensor networks embedded in 2-D and 3-D spaces, as well as a social networks, indicates that the method can accurately capture the network connectivity with a small set of measurements. TPM generation can now also be based on various context appropriate measurements or VC systems, as long as they characterize different nodes by distances to small sets of random nodes (instead of a set of global anchors). The proposed method is a significant generalization that allows the topology to be extracted from a random set of graph shortest paths, making it applicable in contexts such as social networks where VC generation may not be possible.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1712.1006

    Autonomous deployment for load balancing k-surface coverage in sensor networks

    Get PDF
    published_or_final_versio
    corecore