84,621 research outputs found
Distributed Model Predictive Consensus via the Alternating Direction Method of Multipliers
We propose a distributed optimization method for solving a distributed model
predictive consensus problem. The goal is to design a distributed controller
for a network of dynamical systems to optimize a coupled objective function
while respecting state and input constraints. The distributed optimization
method is an augmented Lagrangian method called the Alternating Direction
Method of Multipliers (ADMM), which was introduced in the 1970s but has seen a
recent resurgence in the context of dramatic increases in computing power and
the development of widely available distributed computing platforms. The method
is applied to position and velocity consensus in a network of double
integrators. We find that a few tens of ADMM iterations yield closed-loop
performance near what is achieved by solving the optimization problem
centrally. Furthermore, the use of recent code generation techniques for
solving local subproblems yields fast overall computation times.Comment: 7 pages, 5 figures, 50th Allerton Conference on Communication,
Control, and Computing, Monticello, IL, USA, 201
Distributed Interior-point Method for Loosely Coupled Problems
In this paper, we put forth distributed algorithms for solving loosely
coupled unconstrained and constrained optimization problems. Such problems are
usually solved using algorithms that are based on a combination of
decomposition and first order methods. These algorithms are commonly very slow
and require many iterations to converge. In order to alleviate this issue, we
propose algorithms that combine the Newton and interior-point methods with
proximal splitting methods for solving such problems. Particularly, the
algorithm for solving unconstrained loosely coupled problems, is based on
Newton's method and utilizes proximal splitting to distribute the computations
for calculating the Newton step at each iteration. A combination of this
algorithm and the interior-point method is then used to introduce a distributed
algorithm for solving constrained loosely coupled problems. We also provide
guidelines on how to implement the proposed methods efficiently and briefly
discuss the properties of the resulting solutions.Comment: Submitted to the 19th IFAC World Congress 201
Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods
Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised) with respect to model inputs. In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations) but didactic application case. It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run) and the singular value decomposition (SVD) of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation. For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers) is adopted. Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting
- …
