3 research outputs found

    Load Forecasting Based Distribution System Network Reconfiguration-A Distributed Data-Driven Approach

    Full text link
    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.Comment: 5 pages, preprint for Asilomar Conference on Signals, Systems, and Computers 201

    Control Strategy for a Small-Scale Microgrid Based on Battery Energy Storage System-Virtual Synchronous Generator (bess-Vsg)

    Get PDF
    As one of widely deployed renewable energy resources, PV power is playing a very important role in microgrids today. It has advantages such as making the best of natural solar energy and being friendly to our environment. In this thesis, solar PV based microgrid is studied using modeling and simulation. Microgrid can run in either grid-connected-mode or islanded-mode. However, there are also some disadvantages for solar power. For solar panel, its output is influenced by weather conditions such as illumination intensity and temperature. In addition, during the control process of grid-connected mode, it is hard to guarantee its output power at the maximum power point all the time. In this thesis, the Maximum Power Point Tracking (MPPT) control for Solar PV energy is used. Besides, the frequency control is also a very important issue for guaranteeing the quality of the electricity in the microgrid. By using an effective way of BESS-VSG, which means Battery Energy Storage System-Virtual Synchronous Generator, the frequency can be controlled to the nominal value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change, leading to higher stability and robustness. This thesis focuses on the modeling and control of the PV and BESS-VSG system, and the proposed modeling and control method are verified in MATLAB/Simulink
    corecore