2 research outputs found

    A Multitask Diffusion Strategy with Optimized Inter-Cluster Cooperation

    Full text link
    We consider a multitask estimation problem where nodes in a network are divided into several connected clusters, with each cluster performing a least-mean-squares estimation of a different random parameter vector. Inspired by the adapt-then-combine diffusion strategy, we propose a multitask diffusion strategy whose mean stability can be ensured whenever individual nodes are stable in the mean, regardless of the inter-cluster cooperation weights. In addition, the proposed strategy is able to achieve an asymptotically unbiased estimation, when the parameters have same mean. We also develop an inter-cluster cooperation weights selection scheme that allows each node in the network to locally optimize its inter-cluster cooperation weights. Numerical results demonstrate that our approach leads to a lower average steady-state network mean-square deviation, compared with using weights selected by various other commonly adopted methods in the literature.Comment: 30 pages, 8 figures, submitted to IEEE Journal of Selected Topics in Signal Processin

    Distributed boundary estimation for spectrum sensing in cognitive radio networks

    No full text
    In a cognitive radio network, a primary user (PU) shares its spectrum with secondary users (SUs) temporally and spatially, while allowing for some interference. We consider the problem of estimating the no-talk region of the PU, i.e., the region outside which SUs may utilize the PU's spectrum regardless of whether the PU is transmitting or not. We propose a distributed boundary estimation algorithm that allows SUs to estimate the boundary of the no-talk region collaboratively through message passing between SUs, and analyze the trade-offs between estimation error, communication cost, setup complexity, throughput and robustness. Simulations suggest that our proposed scheme has better estimation performance and communication cost trade-off compared to several other alternative benchmark methods, and is more robust to SU sensing errors, except when compared to the least squares support vector machine approach, which however incurs a much higher communication cost.Accepted versio
    corecore