88,704 research outputs found

    Adaptive Resonance Theory: Self-Organizing Networks for Stable Learning, Recognition, and Prediction

    Full text link
    Adaptive Resonance Theory (ART) is a neural theory of human and primate information processing and of adaptive pattern recognition and prediction for technology. Biological applications to attentive learning of visual recognition categories by inferotemporal cortex and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, auditory streaming, speech recognition, and eye movement control are noted. ARTMAP systems for technology integrate neural networks, fuzzy logic, and expert production systems to carry out both unsupervised and supervised learning. Fast and slow learning are both stable response to large non stationary databases. Match tracking search conjointly maximizes learned compression while minimizing predictive error. Spatial and temporal evidence accumulation improve accuracy in 3-D object recognition. Other applications are noted.Office of Naval Research (N00014-95-I-0657, N00014-95-1-0409, N00014-92-J-1309, N00014-92-J4015); National Science Foundation (IRI-94-1659

    Asymptotic Optimality Theory For Decentralized Sequential Multihypothesis Testing Problems

    Full text link
    The Bayesian formulation of sequentially testing Mβ‰₯3M \ge 3 hypotheses is studied in the context of a decentralized sensor network system. In such a system, local sensors observe raw observations and send quantized sensor messages to a fusion center which makes a final decision when stopping taking observations. Asymptotically optimal decentralized sequential tests are developed from a class of "two-stage" tests that allows the sensor network system to make a preliminary decision in the first stage and then optimize each local sensor quantizer accordingly in the second stage. It is shown that the optimal local quantizer at each local sensor in the second stage can be defined as a maximin quantizer which turns out to be a randomization of at most Mβˆ’1M-1 unambiguous likelihood quantizers (ULQ). We first present in detail our results for the system with a single sensor and binary sensor messages, and then extend to more general cases involving any finite alphabet sensor messages, multiple sensors, or composite hypotheses.Comment: 14 pages, 1 figure, submitted to IEEE Trans. Inf. Theor

    Keep Ballots Secret: On the Futility of Social Learning in Decision Making by Voting

    Full text link
    We show that social learning is not useful in a model of team binary decision making by voting, where each vote carries equal weight. Specifically, we consider Bayesian binary hypothesis testing where agents have any conditionally-independent observation distribution and their local decisions are fused by any L-out-of-N fusion rule. The agents make local decisions sequentially, with each allowed to use its own private signal and all precedent local decisions. Though social learning generally occurs in that precedent local decisions affect an agent's belief, optimal team performance is obtained when all precedent local decisions are ignored. Thus, social learning is futile, and secret ballots are optimal. This contrasts with typical studies of social learning because we include a fusion center rather than concentrating on the performance of the latest-acting agents

    Controlled Sensing for Multihypothesis Testing

    Full text link
    The problem of multiple hypothesis testing with observation control is considered in both fixed sample size and sequential settings. In the fixed sample size setting, for binary hypothesis testing, the optimal exponent for the maximal error probability corresponds to the maximum Chernoff information over the choice of controls, and a pure stationary open-loop control policy is asymptotically optimal within the larger class of all causal control policies. For multihypothesis testing in the fixed sample size setting, lower and upper bounds on the optimal error exponent are derived. It is also shown through an example with three hypotheses that the optimal causal control policy can be strictly better than the optimal open-loop control policy. In the sequential setting, a test based on earlier work by Chernoff for binary hypothesis testing, is shown to be first-order asymptotically optimal for multihypothesis testing in a strong sense, using the notion of decision making risk in place of the overall probability of error. Another test is also designed to meet hard risk constrains while retaining asymptotic optimality. The role of past information and randomization in designing optimal control policies is discussed.Comment: To appear in the Transactions on Automatic Contro

    Distributed Hypothesis Testing, Attention Shifts and Transmitter Dynatmics During the Self-Organization of Brain Recognition Codes

    Full text link
    BP (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-00530); Air Force Office of Scientific Research (90-0175, 90-0128); Army Research Office (DAAL-03-88-K0088
    • …
    corecore