5,026,755 research outputs found
Time-Series Analysis of Photovoltaic Distributed Generation Impacts on a Local Distributed Network
Increasing penetration level of photovoltaic (PV) distributed generation (DG)
into distribution networks will have many impacts on nominal circuit operating
conditions including voltage quality and reverse power flow issues. In U.S.
most studies on PVDG impacts on distribution networks are performed for west
coast and central states. The objective of this paper is to study the impacts
of PVDG integration on local distribution network based on real-world settings
for network parameters and time-series analysis. PVDG penetration level is
considered to find the hosting capacity of the network without having major
issues in terms of voltage quality and reverse power flow. Time-series analyses
show that distributed installation of PVDGs on commercial buses has the maximum
network energy loss reduction and larger penetration ratios for them.
Additionally, the penetration ratio thresholds for which there will be no power
quality and reverse power flow issues and optimal allocation of PVDG and
penetration levels are identified for different installation scenarios.Comment: To be published (Accepted) in: 12th IEEE PES PowerTech Conference,
Manchester, UK, 201
Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework
While many existing formal concept analysis algorithms are efficient, they
are typically unsuitable for distributed implementation. Taking the MapReduce
(MR) framework as our inspiration we introduce a distributed approach for
performing formal concept mining. Our method has its novelty in that we use a
light-weight MapReduce runtime called Twister which is better suited to
iterative algorithms than recent distributed approaches. First, we describe the
theoretical foundations underpinning our distributed formal concept analysis
approach. Second, we provide a representative exemplar of how a classic
centralized algorithm can be implemented in a distributed fashion using our
methodology: we modify Ganter's classic algorithm by introducing a family of
MR* algorithms, namely MRGanter and MRGanter+ where the prefix denotes the
algorithm's lineage. To evaluate the factors that impact distributed algorithm
performance, we compare our MR* algorithms with the state-of-the-art.
Experiments conducted on real datasets demonstrate that MRGanter+ is efficient,
scalable and an appealing algorithm for distributed problems.Comment: 17 pages, ICFCA 201, Formal Concept Analysis 201
- …
